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DYNAMIC RESPONSE OF AIRPLANES TO ATMOSPHERIC TURBULENCE

INCLUDING FLIGHT DATA ON INPUT AND RESPONSE*

By John C. Houbolt, Roy Steiner,
and Kermit G. Pratt

Langley Research Center

SUMMARY

A coordinated account of flight measurements of random atmospheric turbu-

lence input_ of calculated and experimentally determined airplane transfer

functions, and of analytical procedures for determining output or airplane

response is given based on the concepts of power spectral techniques. Atmos-

pheric turbulence results for several meteorological conditions and altitudes

(including new information from thunderstorms) are described and consideration

is given to the numerical values of the root-mean-square gust velocities and

the turbulence scale parameter. _ Transfer functions obtained both by calcula-

tion and as deduced from flight tests are compared for rigid and flexible air-

planes at subsonic speeds and for a rigid airplane at supersonic speeds. Some

of the implications of power spectral techniques for load prediction and for

design are discussed. An outline of the origin and derivation of the correla-

tion and spectral relations used in the paper, the effect of extraneous signals

on determination of the scale of turbulence, and a review of the basic pro-

cedures and mathematics that are involved in the practical applications of

power spectral techniques are given in the appendixes.

INTRODUCTION

This report deals with the science and art of treating the gust loads

problem of airplanes as a random-process phenomenon; subjects included are

(i) the establishment of a realistic and usable description of continuous

atmospheric turbulence by power spectral techniques and (2) the allied treat-

ment of the dynamic response of airplanes to such turbulence. In this cover-

age_ analytical techniques and data - past_ present, and new - and statistical
inference are considered.

*An earlier version of this paper bearing the title "Flight Data and Con-

siderations of the Dynamic Response of Airplanes to Atmospheric Turbulence"

was presented to the AGARD panels on Structures and Materials and on Flight

Mechanics in Paris, July 1962.



Much information on gust problems has been generated over the past decade,

as is attested by the first three sections of the bibliography. It is now

appropriate to ask_ "Where do we stand today in our ability to predict gust

loads, particularly with power spectral techniques?" and "Where does one begin?"

Therefore, in addition to presenting new data and information, the purpose of

this report is twofold - first, to examine the present state of the art and to
indicate what data are available, and second, to determine a starting point for

the selection of appropriate procedures and techniques applicable to the gust

loads problem.

The development of the present report is essentially as follows: Data on

and analytical representation of the turbulence in the atmosphere are first

given_ including results of recent flights through cumulus clouds and thunder-
storms for both subsonic and supersonic flight. Next the means for determining

the airplane transfer function are considered, both analytically and by flight

experimentation methods. A comparison of recent results is given for a sub-

sonic and a supersonic case. Then several suggestions are outlined for the

possibility of establishing the gust design of airplanes by power spectral

techniques. The body of the paper is concluded with a listing of the main
elements which deserve further consideration. A list of principal symbols is

presented in appendix A. In appendixes B to E details of the mathematical
derivations are given and the mathematical representation and analytical pro-

cedures involved in the application of power spectral techniques are reviewed.

Analog equipment for analyzing random functions is described in appendix F.

EVOLUTION OF GUST DESIGN

This resume of the evolution of gust design is restricted to developments

within the United States_ but it should be kept in mind that significant con-

tributions have also been made in the past 30 years by investigators in several

countries.

The early design for gusts was based on a discrete-gust approach involving

the concept of a rigid airplane and a ramp-type gust with a gradient distance

of i0 chords and specified maximum vertical velocity. A somewhat arbitrary

alleviation curve was used to attempt to adjust for differences in such factors

as wing chord and pitching effects; although improper in a rigorous sense, it

was expressed in terms of the convenient design parameter W/S, the wing

loading. This alleviation curve, when used in the gust-load formula, gave

results which were, in effect, the same as if the airplane had encountered a

step-type gust of less magnitude thanthe maximum design velocity used in the

ramp gust; hence, the concept of "sharp-edge gust encounter" frequently
mentioned.

Later the design procedure was changed so chat the alleviation curve was

expressed in terms of the more fundamental and less restrictive parameter _,

the mass ratio. (For small business or pleasure types of airplanes_ however,

the wing-loading parameter is still used.) Also considered was the shape of

the discrete gust - whether it should be a triangular type, sine type_ or

i - cosine type - and many arguments ensued over what shape was the "proper"
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one to use. The shape adopted was a compromis% the l - cosine type with a

gradient distance of 12. 5 chords.

It should be recognized that the use of the discrete-gust concept is, in

principle, a convenient and simple way of relating the accelerations experi-

enced by one airplane to those which are likely to be experienced by another,

and further implies that the relative loads for single isolated gusts are a

measure of the relative loads in a sequence of gusts. This concept seems jus-

tifiable if different aircraft have essentially the same response character-

istics and are used in roughly the same manner. Indeed_ the concept has been

a useful and simple one through the past years.

As airplanes began to change markedly in their configuration and response

characteristics - as sweep was introduced_ as the airplanes became more flexible

and the distributions of their masses differed_ as speeds and altitudes of

operation changed - a more general approach was needed. Hence the power

spectral techniques of generalized harmonic analysis were introduced. The

pioneers of the applications of these techniques are, in particular_ Harry

Press, G. C. Clementson, Norbert Wiener, S. O. Rice, and J. W. Tukey. Refer-
ences i and 2 summarize some of the earlier applications to airplane dynamics.

As these spectral techniques were being developed for airplane applica-

tion_ however_ much work was also done in attempting to extend the application
of the discrete-gust concept from rigid bodies to flexible bodies. In this

flexible-body approach_ the attempt is to include dynamic-response effects by

mathematically flying the flexible airplane through discrete gusts of varying

wavelengths. (See_ for example, ref. 3.) Rough indications of amplification

or overshoot effects are obtained in this way_ but serious deficiencies exist_

such as the inherent inability to take into account the continuous nature of

atmospheric turbulenc% particularly in the case of lightly damped systems.

Design for gusts_ nevertheless_ had to rely on this approach for several years

until the power spectral approach was developed to a usable point. At present,

design philosophy makes use of both the discrete gust and the spectral approach.

Essentially, the design is first established on the basis of a discrete-gust

analysis. It is then examined or checked in greater detail by means of a power

spectral approach_ and comparisons may be made with results for an older or

proven airplane. As the spectral approach becomes further developed, it may

replace the discrete-gust concepts altogether.

The main assets offered by the power spectral approach are as follows:

i. It allows for a more realistic representation of the continuous nature

of atmospheric turbulence.

2. It allows airplane configurations and response characteristics to be
taken into account in a rational manner.

3. It allows more rational consideration of design and operational varia-

tions such as configuration changes_ mission changes_ and airplane degrees of
freedom.
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Since application and tests of these techniques are relatively recent, not all

the ramifications and aspects are known. It is significant and encouraging,

however_ to note that agreement between calculation and experiment on the whole

has been good.

DESCRIPTION OF ATMOSPHERIC TURBULENCE

The nature of atmospheric turbulence in terms of power spectral repre-

sentation is discussed in this section. Firs% the relations required to

obtain time histories of the components of "true gust velocities" from flight

measurements are presented with some considerations of the flight instrumenta-

tion requirements. The term "true gust velocity" is used herein to denote the

actual velocity of the air particles as distinguished from an equivalent veloc-

ity that has been used in discrete-gust studies. The description of the atmos-

pheric turbulence consists of a review of available spectra for low-altitude

(less than 5,000 feet) clear-air turbulence and, in addition, the presentation

of new spectra for more severe turbulence recently measured in cumulus clouds

and thunderstorms to altitudes of 40_000 feet. Analytical representation of

these spectra is considered in some detail.

Method of Evaluation

The basic measurement for the description of the atmospheric turbulence

by power-spectral-density techniques is the angle of attack or angle of side-

slip measured by flow vanes or differential-pressure probes on booms sJ_ead of

the airplane. The flow angles are corrected for effects of airplane motions

to provide a continuous time history of the components of true gust velocity.

The vertical component of true gust velocity is given by

Wg = V_ v - V0 + # az dt + ZxB (i)

the lateral component by

Vg = -V_ v - V_ + Zx_ + f(ay + g_)dt + Zz_ (2)

and the longitudinal component by

Ug: (v-V) - f(ax- g0)dt (3)

(Primary symbols are defined in appendix A; _ is the mean value of the air-

speed.) Equations (i) to (3) are based on the following assumptions:
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i. All disturbances are small enough to allow use of the angle in radians
in place of the sine of the angle.

2. Boom flexure is negligible.

3- Effects of variation in upwash on vane indications are negligible or
are allowed for by calibration.

The measurements are normally taken as increments from the mean values for the
entire record. The actual evaluation procedures to obtain the time history of
the vertical component of gust velocities are, for exampl% given by

/0Wg = V(c_r - _r) - V(e - _) + (a z - _z)dt + -

where the bar denotes the average value for the record length being evaluated

(see ref. 4). This evaluation yields a time history of a component of the true
gust velocity in continuous turbulence at equally spaced time intervals, say
0.05 second. The reading interval c depends on airplane speed and the highest

frequency to be evaluated and is given by the relation c = _/V_o, where

_0 = 0.i is representative of the highest spatial frequency of concern in
turbulence investigations (see appendix D).

The time history is then analyzed to determine the power spectrum of tur-
bulence. This analysis, as shown in appendix E, consists generally of pre-
whitening, estimating values of the autocovariance function, obtaining raw
estimates of power, smoothing the estimates of the power, and postdarkening
these to obtain the final estimates of the power spectrum.

Instrumentation

An airplane is usually used as the platform for transporting the instrumen-
tation for measuring the three components of gust velocity. If all three com-
ponents are to be evaluatedj the instrumentation must furnish measurements to

satisfy all the terms in equations (i) to (3). If the term cannot be measured
directly, then a quantity is measured from which the desired quantity may be
calculated. For example, the vertical acceleration can be integrated to obtain
the vertical velocity of the airplane.

The instrumentation used in several flight investigations has provided
measurements of dynamic pressure, static pressure, temperature, three components
of linear acceleration, three attitudes (pitch, roll, and yaw), three angular
rates (pitch velocity, etc.), and the angle of attack and angle of sideslip
from flow vanes or differential pressure probes. Care is required to obtain
the greatest possible accuracy in the measured quantities and to reduce the
time lag between the measured quantities. These factors become increasingly
important if low-intensity turbulence is being surveyed or long wavelengths are
to be measured. In some cases it may become necessary to use a stable platform
to obtain the measurements of the attitudes and attitude rates of the airplane.
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In the investigation of high-intensity turbulence the accuracy may not be as

critical_ since the errors become a smaller proportion of the measured

quantities.

The boom should be long enough to place the angle-of-attack and sideslip

sensor ahead of the disturbed airflow around the airplane. A practical length

of approximately 1.9 fuselage diameters is normally used, which reduces the

effect of steady-state upwash to approximately 5 percent. The boom should

have a natural frequency above the highest frequency of gust velocity to be

evaluated; specifically_ the angular frequency should be greater than V_o_

where _0 _ 0.i as stated earlier. Also_ the natural frequency should not

be in the same range as the natural frequency of the sensor.

Evaluated Turbulence Spectra

Considerable effort has been expended in the past several years on the

development of the techniques of measuring atmospheric turbulence and the

application of power spectral techniques to the description of turbulence and

to the response studies of aircraft. The early investigations were generally

made in the more prevalent turbulence of clear air at low altitudes (below

5_000 feet) and sufficient spectra were obtained to indicate the practical com-

pliance of turbulence in clear air with the properties of a stationary random

Gaussian process (ref. D). These

data and additional new spectra
for turbulence in cumulus clouds

10,000- and severe storms are reviewed.

Turbulence in clear air.-

Several representative power-

1,000 spectral-density curves for the

- vertical components of true gust
velocities measured in clear air

100- at an altitude of approximately

POWERSPECTRALDENSITY,- 5_000 feet are given in figure i.

_){_), (FT/SEC)2 In this and other figures theRADIANS/FT
power spectral density in (ft/sec) 2

IO- per radians/ft is plotted against

the reduced frequency in

radians/ft with an auxiliary scale

i of wavelengths in feet. The data

cover a range of wavelengths of

approximately i0 to 9,000 feet.

I ..._ . I , For this range the spectra show a
•1 i0, 000 i, 000 i00 I0

WAVELENGHT,X FT characteristic rapid decrease in
L i I I I'I I I

.001 .01 .I 1.0 power with increasing frequency_
REDUCEDFREQUENCY,_, RADIANSIFT and the rates of power decrease

are similar for the various spectra

Figure i.- Power spectra of the vertical compo- The heights of the spectra are anents of turbulence in clear air at an alti-

tude of approximately 5,000 feet. measure of the intensity of the

turbulence; thus_ the intensity of

the turbulent samples varies over
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an appreciable range. More definitely_ the root-mean-square gust velocity

defined as the square root of the area under the portion of the spectrum

evaluated, and herein designated _i_ is often given as a measure of the inten-

sity of the turbulence. For an average spectrum in figure i this truncated rms

gust velocity is about 3 ft/sec. The actual rms value _w, which is associated

with the area under the complete spectra_ may be 2 to 2.5 times as large, as

will be discussed subsequently.

Other spectra (at least i00) from flights in clear-air turbulence at

lower altitudes (200 to 1,000 feet) are given in reference 6. However, the

method of evaluation for these spectra differs significantly in certain details

from that for the spectra presented herein_ and therefore direct comparison is
not made.

Turbulence in cumulus clouds.- In 1959 an instrumented F-86 jet airplane
was used to measure turbulence in cumulus clouds at altitudes of about

15,000 feet near Langley Field_ Virginia, Typical power-spectral-density

curves for the vertical, longitudinal, and lateral components of gust veloc-

ities measured during two traverses are shown in figure 2.

The Wg_ or vertical velocity, spectra are similar to the spectra of clear-

air turbulence (fig. i) with respect to the decrease in power with frequency

and the variation in intensity for different traverses. As expected, the inten-

sity of turbulence is greater than for clear air_ as indicated by the range of

truncated ms values of 3.4 to 9.2 feet per second for nine traverses through

cumulus clouds (spectra for seven

additional traverses are not shown).

From the theory of isotropic

turbulence and use of airplane
lO0,O00

TRAVERSECOMPONENT_,FT/SEC flight measurements to define the
1 Wg-- 7.82

vg----777 turbulence_ the lateral vg and

lo_o %----549 vertical Wg components should
2 Wg -- 6.14

vg----_.63 have similar spectra while the lon-
ug----452 gitudinal Ug spectra should be\\

1,ooo different but similar in shape
POWERSPECTRAL DENSITY,

<ET/SECl2 (appendix B and ref. 5)- The Ion-
¢I_I'RAD.ANSm \ gitudinal spectra should be above

loo _ the lateral or vertical spectra by

a factor of 2 in the range near zero

_ frequency and below by a factor of

lo 3/4 at the higher frequencies. Fig-
I I I

1o,ooo5,ooo1,ooo_o i_0_o 15 ure 2 roughly substantiates the sit-
WAVELENGTH,k,FT nation at the higher frequencies.

l.O t i i I
.0001 .001 .01 .10 1.0

REDUCEDFREQUENCY, ,_, RADIANS/FT
Turbulence in thunderstorms.-

More recently, jet airplanes have
Figure 2.- Spectra of three components of gust

velocity in cumulusclouds, been used to obtain measurements in
the severe turbulence in thunder-

storms to altitudes of 40,000 feet



100,000- ._ TRAVERSE _i' FTISEC over the southwest United

\ 16.02 States. A T-33 airplane

13.62 was used in the spring of
7.46

_,\\_',"k_ 4_ 1338 1960 and an F-IO6 air-
10.000 ,<,,x_ 5 ..... 857 plane flown at low super-

sonic speeds was used in

the spring of 1961. The

spectra of the vertical

POWERSPECTRALDENSITY, '_l-l._ and lateral components of

_(n), (FT/SEC)2 1,000 "_\RADIANSIFT gust velocity are shown

in figure 3 for five

traverses of the T-33 air-

plane through one storm

1oo _' _ at 40_OOO feet. (The lon-

i , i , i , i gitudinal spectra were
i0,0005,000 1,000500 i00 50 10 not obtained because water

WAVELENGTH,x, FT from the cloud collected10
, I J I i t i i in the pitot head in suf-

.COOl .COl .o1 .1o 1.o ficient quantity to dampen

REDUCEDFREQUENCY,_Z, RADIANS/FT the high-frequency air-

speed fluctuations. )
(a) Vertical components.

A comparison of fig-

1,coo,coo ures 3(a) and 3(b) indi-
TRAVERSE _1' FT/SEC cates that the vertical

1 15.39 and lateral components2 -- -- 12.14
3----- 9.00 are similar in shape and

I00,000 k 4 .... 13.17 intensity; this comparison
, 5...... 8_ is shown more clearly in

\._k& figure 3(c). The inten-

-%\-,,\._ sity of the turbulence
]0.000 "4 _ indicated by the truncated

POWERSPECTRALDENSITY, _,'_.,,_ rmS gust velocities for

(FT/SEC)2 _,_% some 15 traverses ranged
_(n), RADIANS/FT '_,_ from 6.1 to 16.O ft/sec.

1,000_

Comparison of spectra
for different weather

conditions.- Typical

lOO spectra for clear air,

cumulus clouds_ and thun-

i i i i i I i derstorms are compared in
10,000 5,000 1,000 500 lO0 50 10

WAVELENGTH,X, FT figure 4. These spectra
lO..... i _ t i show two general features:
.0001 .001 .01 .10 1.0

REDUCEDFREQUENCY,_, RADIANS/FT The similarity of the

slopes of the spectra_

(b) Lateral components, and the variation in the

intensity of turbulence
Figure 3.- Comparison of power spectra of turbulence measured

in successive traverses of a thunderstorm at an altitude with weather conditions
of approximately 40_000 feet. as indicated by the rela-

tive heights of the



I, 000,000

TRAVERSE COMPONENTO_l, FTISEC

TRAVERSE 3 Wg-- 7.46
100,000 v ------ 9.00

4 Wg- 13.38

Vg ------ 13.17

l O,OO0 3 "_xxxxx_/

POWERSPECTRALDENSITY, _k(FT/SEC)2

_ ('D")' RADIANS/FT 1,000 _

100

I I I I I I I
10,000 5,000 1,000 500 100 50 10

WAVELENGTH,X, FT
10 I I ( I
.0001 .001 .01 .10 1.0

REDUCEDFREQUENCY,,fZ, RADIANSIFT

(c) Thunderstorm traverses 3 and 4.

Figure 3-- Concluded.

curves. Many samples for each weather condition would yield overlapping bands

of spectra. (See figs. i to 3.) Thus_ it appears that a composite picture

made up from measured spectra for all types of turbulence would cover a con-

tinuous band of intensities having associated truncated rms values of turbu-

lence velocities ranging from near zero to as much as 16 ft/see.

Turbulence Characteristics

The practical compliance of severe atmospheric turbulence with the proper-

ties of a stationary random Gaussian process is examined in this section.

The property of isotropy has been suggested in figure 2 and will be discussed

further in a subsequent section.

Stationarit7 and homogeneity of severe turbulence.- The properties of
stationarity and homogeneity of a random process specify an invarianee in the

statistical characteristics of turbulence with respect to the position along

the time history where the sampling interval is taken_ the positioning in the

turbulence, and the direction through the turbulence. Inasmuch as the intensity

of the turbulence is dependent upon the weather conditions_ which are known to

change with time_ these properties can apply only in a very limited sense. For

large-scale patterns of air motion the stationarity and homogeneity conditions

might be expected to apply within regions of perhaps i00 miles and time dura-

tions of perhaps an hour. In the case of severe turbulenc% such as that

encountered in thunderstorms_ these distances and times would not be expected

9
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lO0,OOO

_1' ft/sec

storm 13.38

10,000 _ Cumulus cloud 6.14

air 4.48

L

l,OOC
u
o

e

m
c

i00

+,

o

1O

l t 1 J I L J
lO,OOO l,OOO i00 10

Wavelength, X , ft

l I l I __ r 1 i I
0001 .001 .01 .I 1.0

Reduced frequency, _ , rad_ans/ft

Figure 4.- Typical power spectra of vertical component of turbulence measured in clear alr_
cumulus cloud_ and thunderstorm.
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to apply; some available data that have a

20f bearing on these factors are presented.

15_ %&_ \ In figure 5 are given the root-mean-

_I' FTISEC i0_ _'-._C_// _O square values of the vertical component of

5[
gust velocity and the cloud diameter as

01 i _ I i I i J determined from five surveys through a

2o /_--o storm during an elapsed time of approxi-

_____<f/ 4 5 mately 35 minutes, where all traverses were15 3 TRAVERSE made at the same altitude. The cloud grew
/ 2 rapidly in size during two periods and it

CLOUDMILEsDIAMETER,10 / may be noted that the intensity of turbu-

5({_I lence varied_ having relatively high rms

i i , l i i ....I values (14 to 15 ft/sec) during the periods

5 10 15 _0 25 3o 35 of growth and smaller rms values (9 to

rIME, MINUTES i0 ft/sec) during periods of little growth.
From these data it appears that the time

Figure 5-- Variation of turbulence
intensity and cloud diameterwith duration for homogeneous and stationary con-
time at an altitudeof 40_000feet. ditions may be about 5 minutes. Of course_

the spatial region for these conditions

would be limited to the approximate size of

the storm- in this case, about 21 miles.

In figure 6, a comparison is given of the power spectra of vertical gust

velocity obtained from the two successive half-sections of traverse 4 through

the storm; the spectra for the complete traverse are given in figure 3(a). The

individual spectra

covered approximately 1,000,000-
12 miles, or iOO seconds

of time. The two spectra

sgree in general form,

considering that differ-
ences in both time and 100,000-

space are involved.

Thus_ there appears to be

some degree of stationar-

ity and homogeneity pres- i0,000-

ent even in severe storm POWERSPECTRALDENSITY,
(FT/SEC)2

turbulence. _(n), RADIANSIFT

Gaussian test of i,ooo- \_TRAVERSE _i' FT/SEC '

severe turbulence .- For 4-a-- _ -v_,._
the turbulence to be 4-b ..... 11.48 L,,%F_,

Gaussian_ the fluctua- vi]'_ ,
tions of the turbulence m0-

must have a normal prob-
ability distribution. In _ I i i I i li0,0005,000 1,000 500 i00 50 i0
the past, it has been WAVELENGTH,X, FT
customary to consider ]o I _ i i.0O01 .001 .01 . I0 1.0

that if a component of REDUCEDFREQUENCY,_,RADIANS/FT
the turbulence - the

vertical component_ for Figure 6.- Comparison of power spectra of vertical component
of turbulence for two parts of thunderstorm (traverse 4).
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instance - has a normal distribution, then for practical purposes normality of

the turbulence is indicated (ignoring higher order Gaussian tests).

The test for traverse 4

.9999- through a thunderstorm is

.999__C_30 shown in figure 7- The fig-
ure presents the cumulative

.99 frequency distribution of the

o MEASUREDDISTRIBUTION vertical component of gust

.90 - _ -- FITTEDNORMALDISTRIBUTION, velocity Wg plotted on prob-
%= 32.33 FT/SEC

SEC) ability paper. The paper is
PROBABILITY.50 scaled so as to yield aOFEXCEEDI NG

straight line for a normal dis-

.i0 tribution. The data shown were
obtained from a 200-second

.01 traverse read each i/i0 second

(a total of 2,000 points). A
.OOl fitted normal distribution is

.OOO1 I I I I I I I I ] I I _10 I I
-120 -80 -40 0 40 80 120 160 also shown fox comparison with

VERTICALCOMPONENTOFGUSTVELOCITY, Wg,FT/SEC the measured distribution. It

can be seen that the fitted

Figure 7.- Probability of equaling or exceeding curve approximates the meas-
given values of vertical gust velocity for ured distribution quite well
thunderstorm(traverse 4). except at the large positive

values. Therefore, for many
practical purposes, a Gaussian assumption appears reasonable. (Even the meas-

ured distributions for clear-air turbulence depart slightly from a straight

line at large values of Wg.)

Spectral Shape and Analytical Representation

Several analytical representations of turbulence spectra have been used

in the past in connection with wind-tunnel turbulence studies. (See refs. 7

and 8.) Two of these representations are considered here for application to
• J

atmospheric turbulence. One is a representation due to Von Karman which seems

to have been overlooked in recent years; the other is an often-quoted case

which was selected for convenience several years ago as being representative of

atmospheric turbulence.

Analytical representation.- The autocorrelation and associated spectrum

functions that were considered with respect to their appropriateness as analyt-

ical representations of atmospheric turbulence are as follows (see appendix B

for their development):

Case I (isotropic turbulence),

22/3f r _i/3 r 1 r r

R(r) = _w2 (_.339LJ _1/3(1.339L)- _ll._39L)2/3(1._,9L)_K (5)
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22/3
where the numerical factor --rrx is equal to 0.59253.

_w2L 1 + 8(i. 339L_) 2

¢w(_) = _ [l + (1.339L2)2] ll/6 (6)

Case II (has been used for fitting wind-tunnel turbulence data)_

R(r) = dw2(1 - r_e-r/L2L/ (7)

_w (Q) = Ldw2_ 1 + 3L2_ 2 (8)

:(1+ n2L2) 2

where

_w 2 mean-square value of vertical (or lateral) turbulence velocity

L "scale" of the turbulence L = Lu = 2L w (as shown in appendix B)

r correlation distance VT 3 where T is the time shift on a time-

history basis

spatial frequency defined by 2_/_ where _ is the wavelength of
a sinusoidal component

These equations are plotted in

1.o figures 8 and 9- It may be noted

that for Case I the spectra

8 _ vary in proportion to _-5/3

CASEI at the high frequencies_ whereas.6

for Case II they vary in pro-

Ro-2(r/L) .4 __ portion to _-2. A question of

w concern is which of these two

.2 representations best fits the data.

f2.49___ /-2.0 In order to attempt to answer this
0 _/_____ ..... question_ the evaluation of the

two parameters _w and L must

-.2 , , _ _ , _ , _ be considered.
0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2

r/L Evaluation of ms values.-

Two different values of rms are
Figure 8.- Analytical autocorrelation functions.

useful_ as will be seen. The one

13
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Figure 9-- Analytical representation of atmospheric turbulence spectra.

most commonly quoted for atmospheric turbulence, as has been done in the pre-

vious section dealing with the description of the turbulenc% is _i_ the

square root of the area under the measured spectra; that is, the truncated
values obtained as the square root of the area contained between the low- and
high-frequency values of the spectral estimates (as obtained by numerical
integration).

The other and more significant value is _w_ the square root of the total

area under the complete spectrum (value required _in analytical representation);
this is given also as the square root of the initial value of the autoeovarianc_
function of vertical gust velocity (correlation function associated with ver-
tical velocity record having zero mean). That is_

2
R(O) =

14



Evaluation of L.- Several methods associated with the autocorrelation

function or with the power spectrum are available for determining the numerical
value of L.

From autocorrelation function:

The first method to be considered makes use of the autocorrelation func-

tion. It is known that (se% e.g._ table I)

/o2 R( r)dr®(0)=

and for either equation (6) or (8), Case I or Case II, it is also true that

Gw2L
®(o) =

These equations lead automatically to the relation

L = 2 y0 _ R(r))( f0 _ _(T)R_0----_dr = 2V _ dT (9)_(o)

since _w 2 = R(O) and r = V_.

It is interesting to note that other analytically exact methods for

determining L from the autocorrelation functions are possible and useful;
two such methods are mentioned. One involves the location at which the correla-

tion function crosses zeroj the other is an alteration of equation (9) involving
the area under the normalized correlation function out to a specific value of r

instead of to infinity. Specific relations are:

For Case I s

L = 0.402rc (10)

fO rl R(r) dr (11)L = 0.746r I = 2 R(O)

For Case II#

L = 0.5r c (12)

fOL R(r)dr (13)S = 2 R(o)
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where rc designates the value of r at which the correlation function

crosses zero. From a graphical viewpoint rI in equation (ii) is such that

twice the area under the normalized function up to rI equals 0.746ri, a

product which can be shown to equal L, whereas in equation (13), L is such
that twice the area under the function up to L equals L. In general, to use

equations (i0) and (12) the correlation functions, equation (5) or (7), must be

fitted to the data, either by a rough visual technique or more accurately by a

least-square process, from which rc then follows. Equations (ll) and (13)

are to be preferred since they can be applied directly to the correlation data.

From spectrum values:

Evaluation of L may also be made by consideration of the truncated and

total rms values and the analytical representations of spectrum shape as fol-

lows. Consider the straight-line portion of the spectra shown in figures 9(a)

and 9(b)_ from equations (6) and (8) good approximations to the spectrum in the

high-frequency range are for Case I,

%2 (14)
Cw(_)= o.521L2/3_5/3

and for Case II,

5% 2 i (l_)
®w(_)= _ _2

Integration of these equations from _i to _0, the lowest frequency and high-

est frequency of the measured spectrum, gives the truncated value of mean-

square gust velocity for Case I,

and for Case II,

Solution of these equations for L leads to the following relations which
allow a direct calculation of the scale in terms of the two rms values of

vertical gust velocity:

Case I,

lg



which reduces simply to

L = 0.692 al

when very little power exists beneath the spectrum beyond _0" For Case II,

which reduces simply to

= /2! (17o)

Equations (16b) and (iTb) yield results with errors arbitrarily selected as

5 percent or less as long as _i/_0 _ 0.001 for equation (16b) and

_i/_0 _ 0.02 for equation (17b).

The value of L for the vertical gust velocity for traverse 4 through a

thunderstorm (see fig. 3(c)) was obtained from these relations. For these data

_w = 32"33 ft/se% and _l = 13"38 ft/sec for the frequency range of

_I = 0.0016 radian/ft to _0 = 0.096 radian/ft. The values of L are as
follows :

L, feet

Case I Case II

Spectrum:

With _0 = 0.096 (eqs. (16a) and (17a)) ......... 5,550 3j430

With _0 = _ (eqs. (16b) and (17b)) ........... 6,120 3,490

Autocorrelation: (eqs. (ii) and 15)) ............ 5,720 4,750

Fitting of spectrum curve.- Values of _w = 32"33 ft/sec and
L = 5,600 feet for Case I and L = 3_400 and 4,800 feet for Case II were used

to fit the respective spectra to the measured spectra for traverse 4 through a

thunderstorm. Spectrum results are shown in figure i0; autocorrelation func-

tions based on the value of L = %600 feet for Case I and 3_400 and 4_800 feet

for Case II are shown in figure ii. Case I provides an excellent fit of the

data for both the autocorrelation function and the spectrum. By comparison

Case II does not fit very well and there is a conflict as to what value of L

should be usedj a value of L = 3,400 feet seems to fit the spectrum data best

(and if Case I had not been considered, the fit would probably be judged reason-

ably good) but does not lead to a good correlation function fit, whereas for

L = 4_800 feet the situation is just the reverse.
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It is concluded 2

1,000,000 _5600 FT therefore_ that the ana-

lytical representation

based on the theory of

isotro_ic turbulence

I00,000 (Case I) best fits these

data. In addition, it is
indicated that L is

fairly large, apparently
POWERSPECTRALDENSITY, IO,OOC of the order of

(FT/SEC)2 p2 000 feet.@(n), RADIANS/FT

1,ooo As additional evi-
dence that the scale is

%SURED of the order indicated_
recourse is made to the

100 spectral data that were
obtained from the F-f06

I , I i I l I
10,000-5,000 l,OOO500 i00 50 -tO tests. For several cases

WAVELENGTH,X,FT these data extend to fre-
1C _L__I__ I I I I I .--]
.0001 .0o; .o] .i 1.0 quencies lower than those

REDUCEDFREQUENCY,.0., RADIANSIFT just presented (down to

= 0.00045, or h up to

(a) Case I. 14,000 feet), and even so,

no flattening of the

spectrum was apparent.

1,ooo,ooo From figure 9(a) it may
be seen that the scale

must be large to fulfill
this condition of no flat-

lO0,OOO-- tening. Similarly, the

spectrum of clear-air
turbulence given in refer-

ence 9 did not indicate a

lo,ooo flattening of the spectnun

POWER SPECTRALDENSITY, - at a frequency of

(FTISEC)2 _ = 0.0005. Again, theqS(_),RADIANSIFT
scale must be large to

1,ooo-- fulfill this condition of

- CASEU no flattening.
L =4,800

L : 3,400F1 A reexamination was

1oo- made of some clear-air

L____ I I I I I turbulence data (ref. 4)

I0,000 5,000 1,000 500 100 50 i0 by the procedures out-WAVELENGTH,X, FT
i0 -- , I _ i I I I I _1 lined herein (eqs. (9)

.O001 .001 .Ol .] 1.0 to (13) and (16a) toREDUCEDFREQUENCY,D_,RADIANSIFT
(17b)), where the appro-

(b) Case II. priate numerical values
were available. These

Figure i0.- Measured and fitted spectra for thunderstorm.
data yielded values of L
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of approximately 3_000 to

10 _ 6_000 feet for the different

8 _ runs and methods of evaluation.

6 _ A simple means of fittingR(r) CASEI the analytical representation

R(O_ .4 _ _ /-L=5,000FT to the measured spectrum for
.2 CASEII _ _/

L --3,400 FT-/___MEASU_ED the higher frequencies is

L=4'8OOFT_ derivable; L from equa-

tions (lSb) and (17b) is sub-
_ i I i i I i i
"0 2 4 6 8 i0 12 14 _6x103 stituted into equations (14)

r',FT and (15), respectively, to

yield for Case I,
Figure ii.- Measured and fitted autocorrelation functions.

2 _i2

3 al (18)
and for Case II_

Ol 2

®(2_) - _l (19)

Thus, a spectrum curve is easily fitted by evaluating ¢(21) from equation (18)

and then passing a _-5/3 line through the point (ga--21, (1)=(1)(.QI)). For equa-

tion (19) a _-2 line is used.

Statistical description of atmospheric turbulence.- Although the foregoing

material implies that the spectral shape of the atmospheric turbulence is sim-

ilar for wide ranges of weather conditions_ for application of this information

additional statistical parameters must be known_ such as the probability of
occurrence of turbulence of various intensities. Recourse has been made to the

large mass of airplane response data collected over many years during routine

airline operations to provide information of this type on the description of the

atmosphere. References i0 to 12 are examples of such studies. Since such

results are of interest from a loads prediction standpoint_ they are discussed

subsequently in the section entitled "Prediction of Gusts Based on Spectral

Techniques. "

RESPONSE OF AIRPLANES TO RANDOM ATMOSPHERIC TURBULENCE

In this section the dynamic response of the aircraft structure to atmos-

pheric turbulence is considered. Basic in this consideration is the input-

output relation which relates the input and output power spectra through the

frequency-response function for the response quantity under consideration_ such

as acceleration or wing bending strain (see appendix D and table II). The

frequency-response function_ which is defined as the response due to a unit

sinusoidal gust of varying frequencies, is thus the mechanism by which the

various degrees of freedom of the airplane become reflected in the output

response. In general_ the desire is to use the power spectrum of input and the
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frequency-response function to establish the power spectrum of the output;
from this power spectrum statistical properties of the output time history are

then deduced without actually evaluating the time history.

On the other hand_ it is sometimes desired to measure the input and output

spectra and to deduce the frequency-response function so as to assess the degree

of complexity to which the airplane structure must be represented to make

response calculations.

The basic spectral relations_ the frequency responses_ the associated equa-

tions of motion_ and results of frequency-response calculations are presented
in this section together with comparisons with flight-test results.

Basic Relations

The basic relations between the spectra of atmospheric turbulence and the

spectra of airplane responses such as motions_ deformations_ and loads are as

follows (see ref. 13):

General relation.-

Cy = ¢llHIH1 + ¢2_Lm_2 + ¢33H3H3 + . .

where

Cy = @y(_) power spectrum of airplane response quantity y

@ij = ¢ij(_) cross spectrum of turbulence velocities at center of the ith
and jth segmented areas of the airplane

Hi = Hi(e ) frequency-response function of y due to a unit sinusoidal
gust velocity over the segment of the surface associated with

the ith point

Hi = Hi(_) complex conjugate of Hi or Hi(_) = Hi(-_)

Re denotes the real part

The preceding equation is general within linear theory; for airplane

response applications it reduces to a simpler form_ depending on whether the
assumed turbulence model is two-dimensional (nontmiform gust variation across

the span) or one-dimensional (uniform gust velocities spanwise).

Relations for two-dimensional isotropic turbulence.- Earlier results_ as

well as the results presented in the preceding section_ indicate that atmos-

pheric turbulence may be considered to be locally isotropic. For this situa-

tion the following spectral relations apply:
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¢ii = ¢22 = ¢33 .... = Cnn

¢12 = ¢23 = ¢34 = " " = Cn, n+l

¢13 = ¢24 = ¢35 = • • = Cn, n+2

and so on. Correlation of turbulence velocities for this case is independent

of orientation and depends only on the distance between points.

With these relations, equation (20) becomes

By = ¢II<HIHI + H#2 + • • • + 2Re_I2(H_H2+_II\ x H2H3 + • • .)

m¢13(_I -- ) ¢in/_ H -- )__ (21)
+ H_ + H2H 4 + • • • + .... + _71_( 1 n + H2Hn+l + " " "_ii \ - .

Relations for one-dimensional isotropic turbulence.- When the scale of the

turbulence is large_ as results indicate it to be for atmospheric turbulence,

some of the more significant airplane loads problems can be treated in an even

simpler manner by considering that the turbulence velocities vary randomly in

the direction of flight but are uniform along the span; for this model,

= ¢ii = ¢12 = ¢13 .... ¢in

where Cw denotes the power spectrum of the vertical gust velocities. Sub-

stitution of these relations into equation (21) leads to the significant input-

output relation

Cy(_) = Cw(_)]H(_)12 (221

where

H = HI + H2 + • • • + Hn (23)

Alternate equations based on the same model (ref. 13), involving cross

spectra, are

= (24)
or

cy( ) =
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where Cwy is the cross spectrum between the one-dimensional turbulence w

and the response y, and Cyw(_) = Cwy(-_). Additional information concerning

these relations is given in appendix D.

Equation (22) provides a direct relation between the turbulence and the

response spectra in terms of the square of the amplitude of the frequency-

response function; phase information is not involved. Equations (24) and (25),

on the other hand_ retain phase information. This fact is particularly useful

for determination of complete frequency-response functions from experimental

data.

Frequency-Response Functions

In a general sense_ the frequency-response functions which appear in the

preceding equations would include the effects of all components of the airplane

motion - all rigid-body motions and structural deformation. For practical

response calculations_ however_ it is customary to treat the longitudinal and

lateral motions separately (at least for conventional airplane configurations).

Sinusoidal gust velocities are applied to the aerodynamic surfaces appropriate

to the mode of motion being considered; that is_ the wing and horizontal-tail

surfaces for longitudinal motion and the wing and vertical-tail surfaces for
lateral motion.

Usually_ the most significant loads due to turbulence arise from the

response in the longitudinal modes of motion. Therefore, more attention is

given to this motion in the following discussion. The equations of motion

employed are those which follow from a linearized treatment involving small

perturbations about an otherwise steady flight. The treatment assumes a one-
dimensional vertical-velocity turbulence field; that is_ the velocities are

uniform in the spanwise direction. (See refs. 13 and 14 for two-dimensional

turbulence application that would be required if the scale of turbulence is

small.) Degrees of freedom of the airplane include pitch_ vertical motions,

and those representing flexible-body deformations.

Generally, the equations of motion are conveniently formulated either by

a modal approach involving the use of Lagrange's dynamical equation or by a

lumped-parameter method which is based on structural influence functions. For

an airplane which can be considered rigid_ classical dymamic-stability equa-

tions with gust forces added are also suitable. In the modal approach the
elastic deformations are described by a series of modal functions_ usually but

not necessarily possessing orthogonal properties. The lumped-parameter method

generally involves a relatively large number of degrees of freedom compared

with the modal approach.

The modal approach is reviewed briefly here. Let the motion of the air-

plane be expressed by the equation

z(x,y,t) = al(t)zl(x,y) + a2(t)z2(x,Y) + a3(t)z3(x,Y) + • • • (26)
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n

or z(x,y,t) = _] ai(t)zi(x,y)

i=l

where i = i, 2_ 3, • • . n and where the ai's are generalized coordinates and

the zi's are modal shapes including rigid-body modes; for example, zI = i

and z2 = x represent the rigid modes, while z3, z4, . zn are the mode

shapes of the flexible modes. When the flexible modes are chosen to be the

natural modes of vibration of the free-free airplane, the Lagrangian formula-

tion yields the following equations of motion:

Mi'ai + _i_'ai : Qi (i : l, 2, 3, • • n) (27)

where

M i = f z_dm generalized mass where dm is differential mass

_i natural frequency of the ith mode

Qi = _P(x,Y)Zi(x,y)dx dy generalized force in which p is the aero-
dynamic pressure acting on the airframe due

to motion and impressed gust velocities

For sinusoidal motions, let

z = z0 ei_t

ai = ai_ 0ei_t

Qi = Qi, 0eicot

p = po ei_t

Equations (26) and (27) then yield

z0 = al, 0Zl + a2,0z2 + a3,0z3 + . . (28)

: ff P0(x,Y)Zi(x,y)dx dy (i = i, 2, 3, n) (29)
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Aerodynamic forces.- The generalized aerodynamic forces Qi, o may be cal-
culated from the nonsteady surface pressures PO as obtained by several methods

such as a strip theory, quasi-steady or nonsteady lifting-line or surface

theory. These methods differ in complexity and the choice will depend on the

particular application. In the nonsteady lifting-surface theory, one of the

most advanced methods, the pressure PO is related to the downwash on the aero-

dynamic surfaces by the following linear equation:

Wo(x,y,k ) = _ JJ Po(X,y,k)K(x-_,y-_;k,M)d_ d_
(3o)

8_q

where sinusoidalmotion is implied and

w0 local downwash

V airspeed

q dynamic pressure

K kernel of integral equation which denotes downwash at a field point

(x,y) due to a unit pressure dipole at a point (_,_)

_c r

k = 2--_-_ in which cr is the root chord

M free-stream Mach number

The kernel K and numerical methods of solving equation (30) for P0

for given values of w0 have been developed at the NASA Langley Research

Center for both subsonic and supersonic Mach numbers (subsonic leading edges).

(See refs. 15 to 17.) The numerical methods may be applied to wings of arbi-

trary planform and ar% therefore_ particularly suitable for swept or delta

wings. These methods have been programed on high-speed digital computers for

known values of w0 at as many as 16 positions on a wing semispan. Rapid

solutions are obtained for downwashes due to both sinusoidal motion and sinus-

oidal gust velocities on a consistent basis.

The applied downwash w0 may be written (with sinusoidal term suppressed)
as

• xc

w° --- + z° + Wg,oe (31)

•_xck

I + i2 z0 + (32)
Wo = _-_ Wg, 0e
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where Wg_O is the magnitude of the sinusoidal gust velocity and x c is the

location of the downwash point relative to a convenient reference point, say

the leading edge of the root chord of the lifting surface.

To determine PO, equation (32) is substituted into equation (30) with z0

replaced by its definition_ equation (28). The resulting equation is then

solved by numerical procedure and leads to an expression for PO given by

PO = al, OPl + a2,0P2 + " " +an, OPn + Wg, OPg (33)

where the Pi'S are the pressure or loading distributions associated with the

shapes of zi_ and pg is the pressure distribution due to the gust velocity

Wg, 0. In general, these pressure distributions are complex; that is, they have

a component that is in phase with the sinusoidal motion and a component 90o

out of phase.

Solution for freQuency-response functions.- The substitution of equa-

tion (33) into equations (29) gives simultaneous equations which are solved for

the complex generalized coordinates al_O_ a2,0_ .... Solutions are made at
various frequencies and hence the results are the frequency-response functions

for these coordinates, which represent, of course, the modal displacement coef-

O'ficients. From the solution for the ai, s the frequency-response functions

for other response quantities_ such as bending moment or shear_ can be deter-

mined (the H in eqs. (22) to (25)). With the bending moment at a particular

station as an exampl%

H(_) = _(_) = al, O(_)Ml + a2,_2 + • • • + an,_ + Wg, OM--g (34)

where _(_) is the bending-moment frequency-response function. This equation

may be established by two basic means_ as will be outlined briefly. One is the

so-called loads-summation approach, and the other, a mode-displacement
procedure.

In the loads-summation approach the total loading on the structure, con-

sisting of the inertia and aerodynamic loading; is used. Thus,

= _2Zo + P0 (35)P%0

Integration of this loading to obtain bending moments leads directly to

equation (34).

In the mode-displacement procedure the moment is considered to be the

superposition of the moments due to the flexible modes only. In this case,

equation (34) becomes

M0 = a3,0M3 + a4,0M4 + • • • + an, OMn (36)
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where the N_'s are here the moments associated with the deflection shape zi.

_2z.
For example, for a wing treated as a beam Mi = El ____m.

_x2

The choice of procedure for the determination of Mi depends upon the

purpose. The loads-summation method provides better accuracy for a given num-
ber of flexible modes than does the mode-displacement method. The effort, how-

ever, is considerably greater.

Lateral motion.- Significant motions and localized loads (vertical-tail

loads, for example) are generated by the response of the lateral modes of
motion to lateral turbulence velocities acting on the vertical tail and to

vertical velocities acting on the wing (see ref. 18). The lateral velocities

can be approximated by the one-dimensional turbulence described by equation (22)

or (24). For the vertical velocities, however, a two-dimensional turbulence

expression of the type given by equation (21) must be used in order to take
into account the influence of these velocities on the rolling moment. The

frequency-response functions are approximated usually in terms of solutions of

appropriate linear equations of airplane motion for flight at constant speed

and at a given altitude through sinusoidal gust velocities acting on the
vertical tail surface and on a number of sections along the span of the wing.

The derivation follows generally along the same lines as those for the lon-

gitudinal equations and is described in reference 18.

Experimental Frequency-Response Functions

As indicated, the response spectra due to turbulence encounter may be

calculated from equations (22), (24), or (25). It is frequently desired, how-

ever_ to determine the airplane frequency-response functions from measured
turbulence and response spectra for the purpose of comparison with calculated

frequency-response functions. A major reason for determining the response

functions experimentally is to assess the degree of complexity required to

simulate analytically the dynamics of the airplane.

The solution for frequency response for longitudinal motion may be

obtained from equation (22) as

= (37)

or from equation (24) as

®_(_) (38)_o(_) =
®_(_)
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or from equation (25) as

= (39)

Some information is given in appendix D on the practical aspects and interpre-
tation, of these methods.

The evaluation of frequency-response functions for lateral modes of motion

requires more experimental information than that for the longitudinal short-

period mode. As indicated in equation (21)_ not only must measurements be made

which will provide the basic turbulence spectrum ¢w_ but additional measure-

ments must also be made along the wing span to provide data from which the

various cross spectra can be evaluated. As far as is known, no frequency-

response functions for complete lateral motion involving coupling between yaw

and roll have been obtained from experimental data.

The application of equations (37) and (38) to some longitudinal mode cases

is given in the next section.

Comparison of Experimental and Calculated

Frequency-Response Functions

The NASA has conducted flight tests and has made turbulence response cal-

culations for two widely different airplane configurations: one a large

flexible swept-wing subsonic airplane representative of turbojet bombers and

transports_ the other a delta-wing supersonic fighter airplane. Both experi-

mental and calculated frequency-response functions are presented for these air-

planes_ together with a brief description of the degree of complexity of the
mathematical model which formed the basis for

the calculated functions.

Large flexible swept-wing air_lane.- This
airplane is illustrated in figure 12. The

flight test was conducted at a Mach number of

0.581 at an altitude of 5,000 feet in clear-
air turbulence. Calculated frequency-response

functions were based on (i) rigid-body vertical

translation, (2) rigid-body pitching motion,

(3) first cantilever wing bending mode, (4)

first cantilever wing torsion mode, and (5)

the first vertical bending mode of the fuselage
as a cantilever beam aft of the center of

gravity. The method and complete results of

the frequency-response-function calculations

are given in reference 19.

Figure 12.- Flexible swept-wi_
ai_lane. Calculated results which emphasize the

influence of various degrees of freedom are
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shown in figure 13. Figure 13(a) applies to vertical acceleration of the

center of gravity (the movement of the point on the structure which corresponds

to the center-of-gravity location of the undeformed airplane, not the dynamical

center-of-gravity location of the deformed airplane); figure 13(b) applies to

wing bending strain at the 60-percent-semispan station. The quasi-static

DEGOFFREEDOM I

I5 FLEXIBLE,DYNAMIC

----- 1 RIGID, VERTICALMOTIONONLY 14.0.... 2 RIGID, SHORT-PERIODMODE
..... 5 FLEXI BLE(QUASI-STATIC)

,"-"- _ lo.o

J
5.0

, ._ C::__"-'_-"--'::'_':__-:..::-:'---__--_-=............... I I I I
.5 1.0 1.5 2.0 .5 1.0 1.5 2.0 .5 1.0 1.5 2.0

f, CPS f, CPS f, CPS

(a) Center-of-gravity (b) Wing bendimg strain at (e) Ratio of wing strain to center-
acceleration. 60-percent semispan, of-gravity acceleration.

Figure 13.- Effects of various degrees of freedom on frequency-response functions for large swept-
wing:airplane.

condition referred to in the figure differs from the dynamic condition in that

only the static-type aeroelastic deformations of the flexible structure are

considered; the other conditions are as indicated. Although not shown specif-

ically in the figur% calculations indicated that the contributions of wing tor-

sion and fuselage bending were negligible for the frequency range considered.

It is apparent from figure 13 that_ in addition to vertical motion, both

pitching motion and dynamic wing deflections are important to the responses,

particularly the bending strain. It is also apparent that there is no propor-

tional relationship between center-of-gravity acceleration and wing bending-

strain frequency responses for the flexible dynamic case, as has often been

tacitly assumed in gust-loads studies of nearly rigid airplanes. To illustrat%

division of the bending-strain response curves by the corresponding accelera-

tion curve (fig. 13(c)) reveals that for rigid-body vertical motion only, for

rigid-body short-period motion_ and for the quasi-static condition_ the ratio

is indeed nearly independent of frequency; this ratio for the fully dynamic

cas% however_ increases from about i at the short-period frequency

(fsp _ 0-5 cps) to about 14 in the vicinity of the first natural frequency of

the wing (indicating an amplification or overshoot on the order of 1,000 per-

cent). Because of the drop of the input spectrum with frequency_ this amplifi-

cation effect becomes reduced in the output spectrum, but it is still important

and yields a 50-percent amplification on the basis of a root-mean-square value
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comparison between the quasi-

static and the fully dynamic _ CALCULATED
conditions. 2 -

0 EXPERIMENTAL

Example comparisons o___

between experimental and cal-

culated results for the fully

dynamic case are shown in fig-

ures 14 and 15. The experi- AMPLITUDE,FTISEC2 IFTISEC

mental frequency- response func-

tions were obtained by the

cross-spectra relation of equa-
tion (38) • The method and o

complete results are described i I

in references 4 and 20. Fig- ] 2

ure 14 gives frequency-response f, cPs
functions for center-of-

Figure 14.= Calculated and experimental center-of-

gravity acceleration and fig- gravity vertical-acceleration frequency responses
ure 15 gives functions for for large swept-wing airplane.

bending strain at several
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Figure 15.- Calculated and experimental bending-strain frequency responses for
large swept-wing airplane.
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stations on the wing semispan, where y is station location in fractions of

a semispan. The dimensions of the ordinates in figure 15 are those for accel-
eration because the responses of the strain gages were calibrated in terms of

the strain per unit normal acceleration experienced during a shallow pull-up

maneuver. The agreement is good, considering the overall complexity of the

problem. The experimental and calculated frequency-response functions for the

wing displacements exhibited even better agreement than those presented here.
It is to be noted that the number of modes used here appears quite adequate to

determine the frequency-response function in this particular case, but is not

necessarily sufficient for extended load studies where, for example_ peak count
is involved.

Delta-wing fighter airplane.- The delta-wing fighter airplane illustrated

in figure 16 is equipped with an automatic pitch damper. Flights were made

through thunderstorms under the following conditions:

Condition Mach number Altitude_ ft

I 1.3 30,000

II .92 35,000

III .85 15,000

Experimental frequency-response functions were obtained by the spectra

relation of equation (37); consequently, only the amplitude of the transfer
functions could be evaluated. Because of the compact and rigid nature of the

airplane, calculated frequency-response functions were based on rigid-body
vertical translation and pitching motion only. The equations of motion dif-

fered in form from those previously described herein in that: (a) they were

derived from the classical stability equations (described in ref. 21); (b) aero-

dynamic forces due to airplane motion were assumed quasi-steady and were cal-

culated by using the manufacturer's design values of the stability derivatives;

gust forces_ however_ were calculated by the numerical procedure which makes
use of equation (30)_ and (c) the effect of

__ the pitch damper was accounted for in terms

of an effective pitch-damping stability
derivative.

_____---_ Some examples of experimental and cal-
culated frequency-response functions for

acceleration at the center of gravity and

for pitching velocity for both supersonic

and subsonic speeds are presented in fig-

ure 17. CalcUlated results are given for

pitch damper both on and off. The reason

for considering both of these conditions is

as follows: Examination of the flight

_____ _- records indicated that the damper saturated
during the flights; that is_ elevon deflec-
tions in excess of the mechanical limits

Figure16.- Delta-_ fighter were commanded by pitch rate but were not
ai_lane •
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Figure 17.- Frequency responses for delta-wing fighter airplane.

31



realized. The effective damping_ therefore, lies somewhere between the values

for an inoperative and a fully effective automatic damper. Inasmuch as linear-

ized equations were used to calculate the frequency-response functions_ the

effective damping could not be calculated.

The experimental and calculated functions for the supersonic-flight condi-

tions (figs. 17(a) and (b)) agree well; the agreement is good at the high and

low frequencies_ the frequency at which the curves peak agrees well, and at this

frequency the experimental results fall between the two calculated damping con-

ditions, thereby indicating as good an agreement as can be expected. The func-

tions for the subsonic flights shown in figures 17(c) and (d) are not as well

correlated. The precise reason for the poorer agreement is not known, but there

are indications that the stability margins of the airplane were appreciably

larger than the calculated values, and this would give a difference in the

results of the type noted.

PREDICTION AND DESIGN FOR GUSTS BASED ON

SPECTRAL TECHNIQUES

As mentioned in the section entitled "Evolution of Gust Design," the

design of aircraft for gusts in past years has been based solely on the concept

of a discrete gust and an associated gust-alleviation curve. In the earlier

conslderatlonsj the airplane was considered to be a rigid body, but in later

years the major flexibility of the aircraft_ such as fundamental wing bending,

was also included in an attempt to account for dynamic-response effects. In

recent years design has usually incorporated both the single-gust concept and

the concepts of power spectral analysis. The discrete-gust treatment normally

constitutes the nucleus of the design approach, with the power spectral portion

used as a means for bringing out dynamic-response effects more rationally, or

possibly for uncovering unusual response effects that might otherwise be over-

looked. Associated flight-test analysis by spectral procedures has also been

used extensively.

The question may be raised as to whether the design for gust can be based

completely on a power spectral concept, and it is believed that the answer is

yes. In surveying the present situation, the following observations appear

pertinent. Much work has been done in the application of spectral techniques

to the gust-response analysis of aircraft; much has been accomplished and much

is understood. The general method of describing atmospheric turbulence in

power spectral terms and the general procedures for determining airplane

response and for understanding the character of the random processes involved

are now quite well established. It is not yet possiblej unfortunately, to pre-

dict the statistical parameters of the gust-load history of an airplane in an

absolute sense (i.e._ independent of other airplanes and based on knowledge of

the statistical description of the atmospheric turbulence and structural-

response parameters of the airplane) because certain details of atmospheric-

turbulence experience and of structural-response parameters as related to

structural design have not been adequately defined. It appears to be only a
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matter of time, however, before these parameters are defined adequately and
spectral techniques can be used to predict the gust loads on an absolute basis.

In the following section three procedures are outlined which might form
a basis for a power-spectral gust-design procedure. The procedures, in the
order to be discussed_ are: a spectral approach analogous to discrete gust
design, a spectral approach on an absolute basis, and a spectral approach based
on comparison with an existing aircraft. The first and third methods may be
considered interim procedures in which considerable dependence is placed on past

experience. The second method is cast completely in the spectral form but
requires detailed information not completely available at the present time.

Spectral Approach Analogous to Discrete-Gust Design

The spectral approach analogous to discrete-gust design is shown in fig-
ure 18, where the analogous steps in a discrete-gust approach are shown for
comparison. The example is expressed in terms of the center-of-gravity accel-
eration of the airplane, but it should be understood that the actual response
quantities of concern_ such as wing-bending stress or wing shear, would be used
instead in actual design. From top to bottom the sketches on the left show:
(1) the power spectrum of input gust velocity which depends on the atmospheric

turbulence scale L (note that the mean-square gust velocity _w2 has been

extracted and that the spectrum has been normalized so that the area is unity );
(2) the square of the nondimensional transfer function (the dimensions are con-
tained in the factor apSV/2W); and (3) the output response spectrum_ which is

the product of the preceding two items --(K¢2 represents the cross-hatched area).-\
The sketches on the right
indicate: (1) the gust

SPECTRAL DISCRETE GUST velocity shape

( _V ) where H

i- cos_-t ,
Cw(C_)=Ow2x CALE"L Ue--Udex !j,,,'_ ITY is the gust gradient dis-_-H_

tanoe, usually taken as
12.5 chords; (2) the

_ response due to a unit-

[an(_z)]2(apSv_2 apdSVe impulse gust velocity;
=\2W / x h(t)=_ x and (3) the time-history

response of the center-
t of-gravity acceleration

@An(a) = k-_)cw(apSV_2 2 x 2 An(t) =_ap°SVe Ude x II_ tOitemthe(1)gust, input inThe equation for the
t root-mean- square accel-

DESIGNrmsAn IS: DESIGNAn IS: eration _Zku shown at

apSV CrwKk_ apoSVeCAn=_ Anmax 2W UdeKg the bottom of figure 18 is
to be noted in particular,

Figure 18.- Spectral analogy to discrete-gust design.
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since it provides the basis for this approach. For convenience, the equation
is restated as follows:

The input-output relationship indicated in figure 18 in terms of the

spectra and the transfer function is:

_(_) = Cw(a)[_(a)] 2

and in terms of the root-mean-square values is:

apSV

- 2w (4o)

where

and

IS:= I/2

and, therefore_

_ 1/2

Note that equation (40) is analogous to the equation for Zlnmax (shown at

the lower right of fig. 18) which is the type of equation that has been used

extensively through the years for discrete-gust design. The factor K¢ in the

spectral equation is of special significance; it is analogous to Kg, the com-

monly used gust-alleviation factor. Here, however_ K¢ can take account of

the effects of vertical translation, pitch, and flexibility on the response of

an airplane to a continuous random input. It may be recalled that on a math-

ematical approach basis Kg has been associated only with vertical translation

effects (ref. 22).

The spectral equation for _Zln may be transformed into the discrete-gust

form as follows: Consider that the gust-load factor An for design is some

factor _d times _Zhn' thus,

Z_ndesig n = _d_Z_n (41)
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From a probability aspect, it is to be noted that a chosen value of _d is

associated with a given probability of exceeding the design load factor, that

is, the probability that the load ratio Z_ndesign_Zkn = _d is exceeded. The sub-

stitution of _2_n from equation (40) into equation (41) yields:

_ aQSVI \K = apSV WdK @ (41a)Andesign _ _d_W_ ¢; Z_Udesign

Remarkably, this equation is of the same form as the equation used in discrete-

gust design; wd assumes the role of Ude , and K¢ replaces Kg. With respect

to an appropriate value of the product _d_w for use in design, the following

procedure is suggested. Suppose equation (41a) is equated to the discrete-gust
equation indicated at the lower right of figure 18; there results

wd = _d % _ (42)= K¢ Ude

This equation can now be applied to several of the older gust-critical aircraft,

thus permitting the establishment of a proper level of Wd; with this estab-

lished, equation (41a) could then serve as the basis for design. It should be
noted that if Ude is used as an equivalent velocity as is customary, then w d

will be expressed in the same manner. A point of interest with regard to this

design method is that although the derivation originated from the spectral
approach, the final form can be interpreted as a discrete-gust form which
rationally includes someof the dynamic-behavior effects due to continuous
turbulence.

(Equation (41a) may be established from another point of view as follows.
Consider the ratio of a structural load value to the gust velocity producing

this load. For a given airplane_ it would appear reasonable that this ratio as
established by power spectral considerations in terms of root-mean-square values
should be equal roughly to the corresponding ratio as obtained in a discrete-
gust approach_ somewhat analogous to the concept of a spring constant. Thus,
write

_2ku 2_ndesign

Co = Ude

where CO is a factor of the order of unity. The substitution of _Z_n from

this equation into the spectral equation for _Z_n in figure 18 then gives

apSV CoUd e K¢
2_Udesign = 2W _ )

Thus, in this consideration COUde takes on the role of wd in equation (41a),

and from equation (42), CO is noted to assume the character of Kg/K@.)

If stress at a particular point had been considered instead of accelera-
tion, equation (41a) would take the form
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Sdesig n = sowdK@_s

where sO is the stress quantity which takes the place of apSV/2W_ and K¢_ s
is the ms value of the nondimensional output spectrum for the particular stress

being considered. Note that in this approach each response quantity has its

own particular K@_ reflecting the fact that pitch and flexibility enter into

each quantity to a different extent.

Equation (41a) or, more generally, the equation for Sdesig n (just given)

signifies only to a degree a rational design equation for a power spectral

approach_ one that is analogous to the commonly used discrete-gust approach.

The design interest_ however_ is not only in the single large load but also in

repeated loads at lower levels. In the application of these equations, the

number of times a given load level_ for exampl% the design level, is encoun-

tered in thelife of the airplane is not taken into account explicitly; only

the probability of exceeding a given load is known. The number of exceedances

are expected to be closely related_ however_ to those of the gust-critical air-

planes used in the establishment of a design level of wd-

As an illustration that probability of exceeding a given load does not

yield the number of exceedances_ consider the following two sine waves.

These two waves have the same probability distribution_ but the number of

times a given level is exceeded in a given length of time is much greater for

the wave on the right. The treatment given in the subsequent section includes

a consideration of this point.

Spectral Approach on an Absolute Basis

A more definitive but lengthier approach is one that extends the treatment

of the preceding section so that number of exceedances of load levels_ variation

of severity of turbulence with altitude, and proportion of time spent in moder-

ate and severe turbulence at each altitud% are explicitly taken into account.

The approach leads to significant results in the form of average numbers of

load level exceedances per unit flight distance or per unit flight time. It is

based on the development given in references i0 to 12 and may be reviewed here

with the use of figures 19 to 21.

Model considered., Figure 19(a) illustrates the model or concept that is

postulated as representing the atmospheric turbulence experienced by the air-

plane. The model is first considered to be made up of discrete patches of
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disturbances of different mean-

square intensity, each Gaussian

I_l _32_i _ and stationary in character_ and_ + + _ then this model is replaced in a
Cw i Limiting-process sense by a model

Gw=%fIw.hl which has a continuously variable
distribution of rms gust velocity.

IHI2_ _ _ _ It is understood that the patches
are encountered in random fashion,

not necessarily in the succession

shown. The o's in figure 19
refer to the rms value of vertical

_x H 2 + + gust velocity and correspond to

the _w'S used previously herein.

N =N0f_ @ In this section the subscript w
FREQUENCY,_ will be dropped for convenience.

Fl_re 20.- Composite response to _sts. The use of radar, together

with visual sightings and verbal

reports; makes it possible to avoid flights through many storm areas during

routine operations which could not have been avoided prior to the use of radar.

Because of the changing flight experience in storm areas, it is desirable to

have a means for specifically taking into account storm turbulence encounter

to a varying extent. This may be done conveniently by splitting the continuous

distribution curve shown in figure 19(a) into the components shown in fig-

ure 19(b); specifically, the first "Dirac delta" sketch to the right of the

equality sign of area PO refers to the proportion of total flight distance

that is spent in smooth flight (or below a threshold level); the second sketch

is the distribution curve of _ for nonstorm turbulence encounter, the area

PI being the proportion of total flight distance spent in this type of turbu-

lenc% while the third sketch is the corresponding curve for storm-turbulence

encounter. (It may be noted that the sum of the fractional areas PO, PI,

and P2 is unity.)

Consistent with the model shown in figure 19(a), the resulting composite
response of the airplane is shown schematically in figure 20. The situation

pictured is for a given altitude, weight, and airspeed, but a similar picture

is considered to apply at each altitude for other conditions. For simplicity,

only the altitude h is shown as a parameter so that the response for various

aircraft missions can be evaluated. The quantities and equations shown in the

figure are derived as follows: The composite rms value _c of vertical veloc-
ity for the model would be

0°2 : i Wo2(S)dS+ Wl2(S)ds + w22(s ds+ . .
d LUs 0 sI s2

0_0 2 + + d2_2 2 + d3_3 2 + . = Pl_l 2 + P2_2 2 + P3_3 + .

(43)
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where Pn and _n represent_ respectively_ the proportion of time spent in

an nth patch and the associated rms gust velocity_ and o0 is zero. For the

limiting case in which the turbulence model is represented by a continuous

variation in rms gust velocity, equation (43) assumes the form

foe (441

where p(_) is the probability density of _. It should be noted carefully

that the composite rms value _c as given by this equation is here mainly of

conceptual interest and is that associated with the total flight timej its

value is therefore quite small (less than i ft/sec) in comparison with the rms

value of an individual turbulence patch.

Statistical description of gust velocities.- Composite information on the

peak count of vertical gust velocity may be derived from reference 23 where

equations applicable to the peak count of a Gaussian disturbance are developed.

In application to the individually assumed Gaussian patches_ the average num-

ber of peaks per unit distance in the nth patch which exceed a given level of

vertical velocity is given approximately by

en(W) = Goe (45)

where GO is the average number of times per unit distance that w(s) crosses

the value zero with positive slope; its value depends only on the spectrum

shap% and thus is the same for the various patches_ and is given by

- -i/2

fO _ _2_n(_)d_1 (46)GO =_-_

where it is recalled that

ql/2% = ®n(a)daJ

Theoretically, equation (45) applies to the number of times per unit distance a

given value of w is crossed with positive slope; it also happens to be a good

approximation for determining the number of peaks above a given level for large

values of w - for exampl% w greater than _n"
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For the complete model, the equations for approximati_ the average number

of peaks per unit distance which exceed a given level of ve_ical velocity are

B -- -- _.

= i _IG0 e + d2G0 e + d3G0 ea(w) 7

= GO 1 e + p2 e + p3 e (47)

For the limiting case of a continuous variation in the ms value _n_ this

equation becomes

Soa(w)= ao p(_)e d_ (48)

As p(_) may vary with altitude, in effect

a = aof(w,h)

Statistical description of airplane response.- Airplane response is
described in the same manner as gust velocities except that allowance is made

for variation of dynamic-response characteristics of the airplane with speed

and weight as well as with altitude. Consider first the airplane response of

a particular quantity xn due to the nth discrete patch. The mean-square

2 is equal to the area under the outputvalue of the output response _x,n

spectrum_ and the peak count for the response is given by an equation analogous

to equation (45). The rms value and the approximate number of peaks per unit

distance of the response that exceed a specified value are, therefore, given

by the equations

_fo°° 2 ql/2 x,n= @n('Q)d_J (49)

(x2)2_x, n
Nn(X ) = N0e (50 )

It is convenient to introduce a factor A such that

dx_ n = Adn
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or

A = _x,n
_n

where

an = _f: _n(_)d_ 1/2

The quantity A is in the nature of a gust-response factor which depends on

such airplane parameters as weight; wing area; speed_ air density; and also

directly reflects the number of degrees of freedom that are taking part in the

apSV K¢. Theresponse_ in the example shown in figure 18; A has the value 2W

parameter N0_ which is analogous to GO_ is the average number of times per

unit distance that the response x crosses the value zero with positive slope

and is given by

- - i/2

i _0__21_(_)12®n(_)d_ (51)

No=_ F_l_(_)12®n(_)d_,Jo

For the composite discrete-patch model the approximate number of peaks per

unit distance of the response x becomes

N = INo e + d2N0e + d3N0e

= NO + p2 e + P3 e

which in the limiting case of a continuous variation in dn becomes

N = NO p(o')e do , (52)

41



These expressions apply to a given altitude (or altitude bracket) and strictly

also to a given flight condition of weight and speed_ that is, for the flight

interval considered, the transfer function H(_) (hence NO and A)is assumed

to be invariant.

It should be noted that the equations (48) and (52) for G(w) and N

refer to the number of exceedances per unit distance for positive w or x,

or for negative values of w or x; for total peaks including positive and

negative values of w or x_ the equations should be multiplied by two.

Generalized _rediction curves.- Consider now the implication of equa-

tion (52). In functional form the equation may be written

NO '

where h is inserted as a reminder that the altitude is also a parameter.

Equation (53) suggests the form and manner for analyzing gust-response data
collected during routine airplane operations to obtain generalized curves for

prediction purposes. A response quantity that has been collected in routine

operations is the center-of-gravity acceleration. Such data can be processed

to yield the number of exceedances N of given acceleration levels and should

be separated according to altitude brackets and to flight conditions, if

required. The values of A and NO for the monitored response quantity are

calculated for the appropriate flight conditions (eqs. (49) to (51)). In

accordance with equation (53), then, these data may be plotted as N/N 0 against

x/A, thereby yielding generalized curves of the type shown in figure 21(a). Of
significance is the fact that even though the curves are derived from a response

x x

-Oc IA -Oc2A f_'-_ h_N=P_N e ' + P2No e ' = NO '

NONSTORM STORM

60 x 103 I /

I
40 °c,1 %,2

No
ALTITUDE,FT ALTITUDE,30 STOR

FT M /\ \\-% 5,ooo
_\ 15,000 20 rWITH RADAR /i

\ \ 25,000
35,000 10 -ALL WEATHER

45 000I I I I I I I I '

x 0 Oc_, FPS p

(a) Generalized curves for gust load (b) Variation of turbulence parameters with

experience, altitude.

Figure 21.- Turbulence and gust loads experiences in routine operations.
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quantity which is convenient or easy to record, such as center-of-gravity

acceleration_ the generalized curves_ because of their essentially nondimen-

( x__ is the
sional natur% apply to other response values as well. \Strictly_ Aq c

nondimensional quantity and x/A has the dimension of a velocity.)

\

When neces-

sary to distinguish the particular response quantity of interest N_ N0_ and

A will be identified by an appropriate subscript. For example, for the

response quantity stress a parameter would be N0, s.

To obtain peak count information on wing bending stress_ it is only neces-

sary to evaluate the factors A and NO appropriate to this stress (As and

N%s ) for a chosen location_ and to use these factors in conjunction with the

generalized curves of figure 21(a). Figure 21(a) thus represents the very heart

of the approach being discussed - an approach which is a succinct method for

determining the statistical data on peak count for flights of airplanes at any

altitude. As will be shown subsequently, the expected results for any assumed

mission can be derived from these curves.

A brief mention was made earlier of flight operations with and without

storm avoidance. This operational factor may also be conveniently taken into

account by the preceding approach. One way, for example_ is to have a set of

curves of the type shown in figure 21(a) for nonstorm operation, and another

set for storm operation. A specific approach that is of interest, and is based

on the work of references i0 to 12 follows. With reference to figure 19(b)_

analysis of the voluminous data collected during routine airline operations

indicates that the empirically established probability density curves may be

represented with fair accuracy by the equation

= PlPl( )+ P2p2( )

where _ i -d_--m_Iff2Ic,l
Pl(d) = V_ e

-tSt1

P2
_ e

d% 2

where PI and P2 represent the proportion of total flight distance in non-

storm and storm turbulence, respectively, and dc, l and d%2 are the cor-

responding composite values of root-mean-square gust velocity in each type of

turbulence. Note that P0 associated with smooth air is dropped as before and

the remaining flight experience has been regrouped into the two classes. The

substitution of equation (54) into equation (52), keeping in view the form of

equation (53), yields the following expression for peak count:
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N = P1No e + P2No e (55)

The four parameters PI, P2_ _c,l_ and _c, 2 depend on altitude and some

representative curves evaluated from routine operations are shown in fig-

ure 21(b). Equation (55) is also included in figure 21(b)_ this figure, like

the generalized curves of figure 21(a)_ represents an alternative condensed

method for determining the statistical data on peak counts.

In the initial evaluation of the operational data to establish curves of

the type given in figures 21(a) or 21(b), crude estimates for A and NO for

the airplanes involved were used. Thus, to prevent the inappropriate use of

the curves, the numbers on the scales have been purposely omitted. However_

order of magnitude values may be indicated as follows. In figure 21(a) the

logarithmic ordinate scale consists of six cycles with the largest value in the

range of 10 -2 to 10-3 and the linear abscissa scale covers a range of from 0 to

60 to 80 fps. In figure 21(b) the abscissa scale of the P curves ranges from

zero to about i0 -I while the range of the _c curves extends from zero to

roughly i0 ft/sec.

Extension to treat various missions.- The extension of the preceding

analysis to treat complete missions where altitude, speed, and weight varia-
tions are involved follows easily. Thus, the equation which yields the com-

posite total number of peaks per unit distance, on the average, that exceed a

given value x during a complete mission of an airplane is as follows

___xh x__ h

where DI, D2, . . are the distances traveled in each altitude bracket con-

sidered, and D the total flight distance. Subscripts referring to altitude

bracket are also applied to NO and A to denote that these factors may

change also with altitude. The effects of other flight conditions such as speed

are contained implicitly in A and NO . The repeated load history in a sta-

tistical sense for the entire mission is thus described by this equation. If

necessary, each tem in equation (56) may itself be separated into a suitable

number of terms appropriate to the variable flight conditions considered. When

applied to the determination of peak counts the equation is only suitable for

the larger values of x as indicated by the statement following equation (46).

Further, for total peaks including positive and negative x_ the equation

should be multiplied by two.
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It should be noted that the appropriate characterization of peak counts

for the gusts conflict somewhat with the characterization of peak counts for

response. Since atmospheric turbulence is essentially space fixed, the number

of zero crossings per unit distance is a logical parameter. A given airplan%

on the other hand, tends to be frequency fixed; the logical parameter for air-

plane response therefore would be the number of zero crossings per unit time.

Equation (56) may be converted to the number of peaks per unit time Nc'

above a given level as follows

Nc' -- T - T VIN% If ,h + -- V2No_2 f _h + .V2

or

"c' -- \A1 J 2f 'h2 " "

where TI_ T2_ . . . are the times traveled in each altitude bracket_ and T

the total flight time; N' = N'
O, i VINo_ i_ O, 2 = V2No_ 2_ . are the number of

zero crossings per unit time at each altitude; for most cases these values

should change very little with altitude, and for practical evaluation purposes_

therefor% a single value might be taken for a given airplane to apply at all
altitude s.

Since equation (56) gives the average number of peaks per unit distance

that exceeds a given value x, the total distance D that must be flown (again

on the average statistically) to encounter a total of np, x peaks above this

level is given by

DN%x =np, x

or

D = (58)
N% x

In an analogous manner, the equation for a unit of tim% say in hours_ that

must be flown to encounter np peaks above a given level is found from equa-

tion (57) to be

T = (59)
N'
C_X

For design, the results obtained from either equation (58 ) or (59) would be

assessed to judge whether the airplane is expected to be safe or satisfactory

for routine and extended use. The number of miles_ or alternatively the number
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of hours_ that can be flown in a statistical sense before exceeding a design

load level, such as limit load_ by a specified number of times is either stip-

ulated, or more likely_ is selected on the basis of past demonstrated perform-
ance of certain aircraft. The aim is to have the new design at least fulfill

such a chosen requirement. How far the "life" of the ai_lane can go beyond

this cannot be determined with ce_ainty.

The question of to what extent the design should be based on miles of

flight or hours of flight is of _ndamental impo_ance_ and merits careful study

and appraisal. As an illustration of the problem involved, consider a new fast

ai_lane and an old slow ai_lane. The following sketches show schematic_ly

the differences in the expected statistical load behavior. On the left, the

new airplane is designed to yield the same number of miles to exceed limit load

I I New_ fast

I _Old_ slow

to "_lanes //I il

exceed

limit / // ,I
load I / I

I
;

x_ x_

_Old_ slow

1_New, fast I

Hoursto _ lanesexceed //

limit
load /

x Z x_
as for the old ai_lane. As a consequence_ the new fast ai_iane will reach

limit load in fewer hours of service than will the old. In contrast_ on the

right, the new _d old ai_lanes have the same number of hours of service before

reaching li_t load. In this case, the new ai_lane may be expected to fly a

greater number of miles before reaching li_t load. The basic question briefly

considered here is the relative significance of the experience in time or
dist_ce.

Comparison With Existing Aircraft

The third procedure is to compare the airplane being designed with an air-

plane that has been in use or service for a long time in order to obtain a new

airplane that is at least as good as the "proven" design from the gust view-

point. Generally_ the details of the procedure have to be tailored to the
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particular situation, depending on whether the design is still in the planning

stage, whether a prototype exists, or whether there are flight data available

on this prototype. A unique procedure therefore cannot be outlined for all

cases. A procedure that may be applicable to many cases_ however_ is
described herein.

Before presenting the details_ the general sequence of steps in the method

is indicated. In this method_ an airplane that is known to be gust critical

and for which extensive operational data exist_ say in the form of peak counts

of center-of-gravity accelerations An, is selected as the reference airplan%

designated by subscript i. The acceleration data for this airplane are con-

verted by calculation to estimates of peak counts of other response quantities

of interest such as wing bending stress. This process is also used for the air-

plane being designed (designated by subscript 2) to be "as good as" the refer-

ence airplane. The peak-count curves of the two airplanes are then compared,

and, if necessary, changes in the new design are made so that its estimated

stress experience is judged to be no more severe than that of the reference

airplane.

The basic relation to be used is the composite peak count of accelera-

tion An for the reference airplane given in a form which is essentially that

of equation (53)

Nc f 2_u

or_ more ex-plicitly_ in thegeneralized nondimensional form for response x
given by

,x J1

as a function of x/A x where NO_ x refers to the number of zero crossings for

unit distance and x refers to a given response quantity_ als% N%x is the

number of peaks exceeding a given value x of the response quantity in a unit
distance.

This relation applies to all response quantities of interest on the basis

of the representation of the airplane as a linear system. It is assumed that

the new airplane will be subjected to the same turbulence model as the refer-

ence airplane. Therefore_ identities such as the following hold

sj2 L °,sJ1 L"o, Jl
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These relations provide a basis for expressing the peak counts of various

response quantities in terms of those of_ for exampl% accelerations.

It is also desirable to bring in explicitly the differences in flight

distances traversed by the airplanes. The total number of stress response

that fall above the level s in a flight distance D is given by
peaks np, s

np, s = DNc_ s

From this equation and equations (60) and (61), the following relations for

peak count can be derived: The peak count of stress exceeded in the reference

airplane is

(np, s) I = Dl(Nc, s) I = DI(No, s)I Y (62a)

where the stress exceeded is

(s)l = w(As) l

In terms of the acceleration exceeded in the reference airplane; the peak count

of stress exceeded is (see eq. (60) for Y)

(%,s)1

(np, s) I : DI(Nc, s) I = DI (N0,An)I(N%zxu)I (62b)

where the stress exceeded is related to the acceleration exceeded by

(s)1 = (Am)l( )l

The application of equation (62b) to the conversion of (N%f_n)l to (Nc, s) I

is illmstrated by the following sketch (with DI canceled):

s A'

I

B s
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As indicated by path AJ_'_ the numerical value of the stress peak count _Nc, s) I

is determined by multiplying the value of (Nc,Z_n) I for a given value of (Zkn)l
( 1
"NO's'l . The value of the stress exceeded is obtained by multiplying the

by (No,_) 1 (As "_l

given value of (Zkn)I by (Azsn)l as indicated by path BB'

The relations between the peak count of stress in the new airplane to that

of acceleration in the reference airplane are obtained in a similar manner.

These relations are

(No, s)

2 (63)
=

w ere

2
(s)2 = (A_)l(_)l

The relations between peak counts of stresses in the two airplanes from

equations (62) and (63) are:

(np, s)2 = D"I (NO, s)i(np's)l (64)

where
\

(As)2(_)l _/_

(s)2 =_

The peak-count curves from equations (63) and np,s
(64) for the reference and new airplanes_ respec-

tively, are plotted on a common chart as illustrated AIRPLANE1
in figure 22. For the example used in this figure; _jAIRPLANE2

(N%z_n)l is assumed to be known,

(np,s)l=3 ×109(_c,m)l, (s)l 2 x 104(m)l, EXAMP_S.F.__
(Up, s) 2 = 2(np, s)l, and (s)2 = 0.9(S)l. The ade-

\
I l , I

quacy of the new design is then judged by the rela- STRESS,s
tive position of the two curves. In general, it is Figure 22.- Design compar-

desired to have the curve for the new airplane fall ison with "proven

on or to the left of the reference curve. If this airplane."
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is so, it is assumed that the load experiences of the new airplane will be no

worse than that of the reference airplane.

As described_ the method essentially assumes that the new airplane does

not differ in major respects from the reference airplane and the method might

be specially suited for application to a new design evolved from a predecessor

design. If the new design should differ radically in its operating character-

istics, it would be necessary to modify the method to account for such
variations.

Since the peak-count history is strongly dependent on the two structural

parameters A and NO, it is of interest to see what must be considered rela-

tive to the behavior of A and NO when design changes are contemplated. A

qualitative insight with respect to how changes in A or NO may alter the

peak-count history can be obtained by reference to figure 23. Consider that

curve i refers to the square of a frequency-response curve for the reference

airplane_ while curve 2 is the comparable curve for the new airplane. Because

of the large peak in the curve for airplane 2, the value of NO will be larger

than that for airplane i (because of the _2 weighting in eq. (51)). To com-

pensate for this larger value of NO_ from a peak-count point of view_ the

value of A for airplane 2 must be smaller than that for airplane i. The value
/ k

of A <that is, A = _x,n_ however, is governed largely by the height of thean I'
frequency-response curve at the lower frequencies_ thus_ to reduce A for the

new airplane_ the frequency-response curve must have lower amplitudes at low

frequencies than that of the comparison airplane. Specific or numerical trade-

offs in NO and A depend_ of course_ on each particular situation.

This comparative or relative procedure has the feature of making the

results somewhat insensitive with respect to whether or not the "correct" values

of aerodynamic and structural parameters are used in the calculation of A and

N O . Often different individuals will select different values for the parameters

involved, for example, in the choice of lift-curve slope, or whether the mid-

span chord or the mean aerodynamic chord is

f_ used. By nonrelative procedures_ estimated

\ response results may differ significantlydepending on these choices_ here_ however,

IH(_)I2_/\,fAIRPIAMF2 there should not be a marked difference in
results obtained by different individuals

because only ratios of like quantities are

involved; "errors" in chosen parameters will_

therefore_ tend to compensate, as long as

each individual selects his parameters in aFREQUENCY,
consistent manner. It is noted that while

the procedure is believed to be potentiallyFigure 23.- Frequency-res_nse
functionsfor comparable versatile_ it has not as yet been pursued

per count histo_, sufficiently.
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CONSIDERATION OF COMBINED STRESSES

The question is sometimes raised as to whether spectral techniques can

take into account the problems of stress due to combined loads and of inter-

action effects. Means for doing this are outlined below for two example

situations.

Stresses Due to Superposition

Consider that the stress at a critical point in the structure is the

result of several simultaneous loadings that occur during turbulence encounter,

as indicated_ for example_ by the following equation:

s(t) = aM(t) + bV(t) + cT(t)

where M_ V_ and T refer to moment_ shear_ and torsion_ respectively (see
fig. 24). When considered individually_ the stresses due to each of these

three loads may be quite

different in amplitude and

BY,NTERACnO.: phase_ and it would be

BYSUPERPOSITION: T P(_'_ improper to determine sepa-

_l---tt_ rately the spectrum of the
_ stress from each source, forthere is no way to combine

___-7_ them to obtain the spectrum/_ _-_}>>_ CRITlCAL INTER-

T __ __ACTI_NCURVE of the combined stress. The

proper procedure is to

_VOLUA,IE<Pdesign determine the frequency-response function for the

total or superimposed stress

Figure 24.- Combined stress treatment, s(t)

 s(m)= +bZ v( )+

not for the individual stresses_ and to use this frequency-response function

to determine the power spectrum of s(t)

= 2

All phase relationships will then be taken into account automatically.

Critical Stresses by Interaction

The problem referred to here is the critical load in a structural element

whose strength or stability is governed by an interaction curve (see ref. 24)

of two or more stresses. This problem may be approached by joint probability
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considerations as indicated by the following example: Suppose the critical

loading of a panel is governed by an interaction curve involving shear stress

and compressive stress o. The joint probability-density distribution of

the two stresses depicted on the right side of figure 24 is determined; the

interaction curve is inserted in the _-T plane. The probability that a crit-

ical loading condition is exceeded is expressed by the volume lying outside

the interaction region and contained between the _-T plane and the distribu-

tion surface_ that is_ the shaded region in figure 24. For design of the

element_ this probability should not exceed the design probability level

established. (See also table I.)

CONCLUDING REMARKS

In this report which deals with determination of the dynamic response of

aircraft to continuous atmospheric turbulence by power spectral techniques_ a

review is given and new information is presented on

(i) the description of atmospheric turbulence including cumulus cloud and

thunderstorm turbulence_

(2) aircraft-response analyses and a comparison of results with several

flight measurements_ and

(3) prediction techniques based on power spectral methods for use in air-

craft design for gust loads.

In the appendixes are given an outline of the origin and derivation of

the correlation and spectral relations used in the report_ the effect of pos-

sible extraneous signals on determination of the scale of turbulence_ and a

review of the basic procedures and mathematics that are involved in the prac-

tical applications of power techniques.

Some of the highlights of the report are summarized as follows:

1. Atmospheric turbulence measurements and spectral evaluations have been

extended (beyond clear air) to include cumulus clouds and thunderstorms.

2. Analytical expressions for the autocorrelation and spectrum fitted to

the measured atmospheric turbulence data were examined for two cases in which

the spectrum varied at the higher frequencies as _-5/3 or _-2. The _-5/3

case was found to give good internal consistency and a better fit than the

previously used expression involving _-2.

3. Distinction is made between two different root-mean-square values of

gust velocity. One value_ often quoted in the pastj is associated only with

the area under the portion of the spectrum that is evaluated and is_ there-

fore_ a truncated value. The other_ which is associated with the area under

the complete spectrum_ is the overall or actual root-mean-square value. The

actual root-mean-square value is two to two and one-half times as large as

52



the truncated root-mean-square value. Overall rms values of 32 ft/sec were

found to be representative of thunderstorms_ a value of 15 ft/sec is estimated

for cumulus clouds.

4. Thunderstorms were found to have a scale of turbulence L of approx-

imately 5_000 feet. A reexamination of results from clear-air-turbulence

investigations made at a 5,000-foot altitude indicated that the value of L for

clear air is also of this magnitude. (Where numerical values were available to

permit use of the procedures outlined herein, the values of L ranged from

3,000 to 6,000 feet for the different traverses and methods of evaluation.)

5- Load and motion frequency responses from flight tests in rough air of

a large flexible swept-wing airplane at subsonic speeds and of a delta-wing

airplane at both subsonic and supersonic speeds are compared with calculated

responses. In general_ good agreement between the measured and calculated
results was found.

6. Several approaches based on power spectral techniques for the design

of airplanes for gust loads are outlined_ In general, the basic spectral
techniques for analyzing flight data 3 for determining aircraft response, and

for predicting statistical load histories seem sound and well established.

More work and understanding in a detailed sense are needed to be able to pre-

dict the gust loads of an aircraft on an absolute basis.

The present investigation indicatessome problem areas which merit further

study. The lateral-response problem including a development of an experimental

technique needs further study to assess its importance more comprehensively.

Procedures for calculating airplane response parameters in a consistent and

accurate manner are needed. Following this_ a reevaluation of the routine

operational data is needed to establish more accurate generalized curves for

gust-load experience. As regards prediction and design techniques_ the

approaches suggested herein warrant application to specific examples to work
out details and to alter them as is found necessary. As a related item which

is beyond the scope of this paper_ but which is a logical extension, work

should be done to determine how an analysis of the type given herein can be

tailored or integrated into the fatigue problem. Specifically, the fatigue of

structures under a random-force input and the manner or technique for appro-

priately simulating the fatigue testing of structures under combined loading

need further study and development.

Langley Research Center_

National Aeronautics and Space Administration_

Langley Station_ Hampton_ Va._ January 8, 1964.
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APPENDIX A

SYMBOLS

The primary symbols used in this report are defined as follows:

A airplane response parameter relating rms input and output values

A(t) response of system to unit step

a lift-curve slope; amplitude

ai generalized coefficient

an_bn, ao Fourier series coefficients

a_b_c stress coefficients

ax;ay, az longitudinal_ lateral_ and vertical accelerations

c wing chord; co-spectrum

A

ch raw estimate of co-spectrum

Cr root chord of wing

Cxy co-component (in phase) of cross spectrum

D flight distance

d_d0_dl_d2_.., flight distance in turbulence of given intensities

EI_ E2 sampling error in amplitude and phase of frequency-response function

E( ) three-dimensional power spectrum

El elastic stiffness

e( ) spurious signal in measured quantity

F( ) nondimensional power spectrum of longitudinal component of random
variable

f frequency, cps

f( ) generalized function

f(t) input force function
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f(r) nondimensional autocorrelation function of longitudinal component of
random variable

G average number of peaks per unit distance which exceed a given value

of vertical gust velocity

GO average number of zero crossings per unit distance with positive
slope for vertical gust velocity

G( ) nondimensional power spectrum of transverse component of random
variable

g acceleration due to gravity

g(r) nondimensional autocorrelation function of transverse component
of random variable

H gust gradient distance _

H( ) frequency-response functions; subscript s refers to function
determined from spectral relations and subscript c refers to

function determined by use of cross-spectra relations

h altitude

h(t) response due to unit impulse input

K statistical degrees of freedom

Kg_K¢ gust alleviation factors

KV modified Bessel function of the second kind

k reduced frequency_ _c/2V

Lh raw estimates of spectral power

L scale of turbulence

Lr scale of turbulence deduced from measurements containing spurious
signal

Zx, Zz longitudinal and vertical distances from accelerometer to flow vane

M Mach number

M i generalized mass for ith mode

M i bending-moment distribution associated with ith mode
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Mg bending moment due to gust velocity

m structural mass density_ maximum number of autocorrelation function
lags

N_N 0 average number of peaks per unit distance which exceed a given level
of response and average number of zero crossings per unit distance

with positive slope

N c composite average number of peaks per unit distance

(n number of intervals used in time-history record TL = ne =

np total number of peaks exceeding given level of response quantity

fkn vertical acceleration in g units

PO_PI, P2,... proportion of total flight distance spent in given type of
turbulence

p pressure_ number of autocorrelation function lags

P( ),Pc( ) probability density function

pg pressure distribution due to gust velocity

Pn proportion of time in nth patch of turbulence

total pressure om structure
P%0

Qi generalized force

q dynamic pressure; number of time intervals_ quadrature spectrum

qh raw estimate of quadrature spectrum

qxy(_) quad-component (out of phase) of cross spectrum

R( ) correlation function

Re( ) correlation function of spurious signal

Rr( ) correlation function of contaminated signal

R(p) sum of lagged products used to estimate cross-correlation function

Rxy ( ) cross-correlation function of x and y

r,r I correlation distances r = V_
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rc value of r at which correlation function crosses zero

S wing area

s,s( ) stress

T general time limit

TL record length

t time

U maximum gust velocity

Ude derived gust velocity

u longitudinal component of true turbulence velocities

V airplane speed

Ve equivalent airspeed

v lateral component of true turbulence velocities

W airplane weight

Kg

w d = _d_W = _¢ Ude

Wg_O magnitude of sinusoidal gust velocity

w vertical component of true turbulence velocities

w0 local downwash; initial value of airplane vertical velocity

wr vertical component of true gust velocity containing spurious
signal

x general input function_ or a general response quantity

xc location of downwash relative to a convenient reference point

X_Y_Z longitudinal_ lateral_ and vertical axes

y general respons_._quantity

semispan station

y(t),y(T) general and truncated response time histories

z_z i mode shapes
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z(x,y,t) displacement of points x and y

vertical vane angle

damping coefficient

Pcr critical damping

Pv side vane angle

gamma function

7 damping ratio

y2(_) coherency function

A incremental value

Dirac delta function

c time interval of sampling, TL/n

_d - Zkndesign
_Z_n

@ pitch angle

wavelength

mass ratio

p air density

Po air density at sea level

root-mean-square value

_c composite rms value

_l,_w truncated and complete rms values, respectively

_i,_2, 03, ...a n complete rms values for given patches of turbulence

T time lag

¢ power spectrum

Ca, i power spectrum of displacement
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Cxy( )'¢wy( ) cross spectrum of two quantities

roll angle

yaw angle

angular or circular frequency

_i natural frequency of ith mode

effective filter bandwidth, 4___mc

2_
spatial frequency_

_0 highest spatial frequency to be evaluated

_i lowest spatial frequency to be evaluated

Subscripts:

av average
)

cr critical

e error

f filtered

g gust or turbulence

i ith mode of motion

m measured

M moment

n nth turbulence patch

Zkn acceleration

r contaminated signal

s stress

sp short period

st static value
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T truncated in time_ torsion

u_v,w longitudinal_ lateral_ and vertical turbulence velocities

V shear

x_y general input or output response quantities

A dot over a symbol represents differentiation with respect to time.

The symbol ^ over a figure indicates a prewhitened quantity.
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APPENDIX B

CORRELATION AND SPECTRAL FUNCTIONS

A brief outline of the origin and derivations of the correlation and

spectral relations used in the body of this paper is given in this appendix.

General Relations

Consider two points A and B in an isotropic turbulent field. The correla-

tion of particle velocities at these two points is conveniently expressed in

terms of five basic correlation functions; two are double correlation functions

and three are triple correlation functions. 0nly the two double correlation

functions need be considered here; they are as indicated by the following sketch

and equations:

Longitudinal:

, 1 (Bla)
Ru(r ) = ulu I = _ ul(0't)ul(r't)dt

f(r) - Ru(r) - Ru(r) - UlUl' (Blb)

_(0) _2 ul2

Transverse:

, i J_OT
Rw(r ) = WlWl = _ wl(0, t)wl(r,t)dt (B2a)

g(r) - Rw(r) - Rw(r) _ (B2b)

Rw(0) _w2 --wl2
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in which

%2 = _u(O)= ul2= _w2 = Rw(O)= wl2 (Bs)

From the equation of continuity_ it may be shown that these correlation func-

tions are related by the equations

r _Ru
Rw = Ru+ -- (_4a)

2 _r

or

g = f +r _f (B4b)
2 _r

Thus_ if one value is known_ the other is automatically specified.

Associated with the two correlation functions in equations (Bla) and (B2a)

are the one-dimensional power spectra defined by the following Fourier trans-

form pairs:

f foco -i_r 2
_u(_ ) = i Ru(r)e dr = -- Ru(r)cos _r dr (BSa)

--OO

R_(r)= ! Cu(a)ei_rda = ®u(a)cos_r_ (B_b)
2 --OO

and

JoCw(_ ) = _i Rw(r)e -i_r dr = _2 Rw(r)cos _r dr (B6a)

foRw(r ) = I Cw(_)e i_r d_ = Cw(2)cos _r d2 (B6b)
2 -co

For convenience_ these equations are often expressed in terms of nondimensional

spectral and correlation functions as:

F(a) = @u(a) _ 2 f(r)cos ar dr (BTa)

eu2

_0 °°

f(r) =--Ru(r) = F(_)cos _r d_ (B7b)
%2
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and

ga(a) - _w(a) - 2 g(r)cos ar dr (BSa)
_w2

_0 °°

g(r) -Rw(r) - G(_)cos _r d_ (BSb)
_w2

From equations (B4) to (BS), it follows that the spectral functions are related
by the equations

i ®u(_) _ d®u

or

As mentioned, the spectra defined by equations (BD) and (B6) are called
one-dimensional spectr% and that of equations (B5) often being referred to as
Taylor's spectrsLl function. These spectra represent_ in effec% one-dimensional
cuts through a turbulence field which in reality is three dimensional in char-
acter. To represent the actual spatial character of the turbulence_ a three-
dimensional energy spectrumj or spatial spectrumj is used which involves the
use of three-dimensional Fourier analysis (or the concept of a correlation
tensor). This three-dimensional spectrum_ designated here by E(_), is expres-
sible in terms of the one-dimensional spectra_ specific relations are:

s(n): _ _c2 2 _

or

®u(Ol): yn (B.Ob)1

and

i _(_) +:_ _°i_ (BlOc)
2 i

It is of interest to note how much energy is contained in the three-dimensional
spectrum as compared with the one-dimensional spectrum; integration of equa-
tion (BlOa) yields
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By equations (BSb) and (B3)_ however, the integral on the right equals _u2;

the mean-square value of the three-dimensional turbulence velocity _E 2 there-

fore bears the following relationship to the one-dimensional mean-square value:

_E2 = _ _u 2

Turbulence Scale and Limit Relations

It is common to introduce various lengths which are significant in char-

acterizing the structure of turbulence. Two of these lengths are called the

macro- or integral-scal% or simply scal% of the turb_lenc% and are defined

by the equations

5u = f(r)ar (B12a)

Lw = g(r)dr (Bl2b)

Interpreted physically_ these lengths are a rough measure of the longest dis-

tance that two points in a turbulent field may be separated before the correla-

tion between the velocities becomes zero. Another interpretation is that they

are a measure of the average eddy size. By equations (B4), these lengths are

found to be related by the equation

With equations (BI), (B2)_ and (BI2)_ the following useful limit relations

follow from equations (B5) to (BS):

gf(0)= _(0) = F(a)da--1
_u 2

Ru(O)= ®u(a)da= %2
(B14)

F(o) _u(O) 2 f(r)dr 2I__
_u2 _

2

f0_ 2Lu%
2 Ru(r)d r =Cu(O)= _
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and

g(O) = _(o) - a(a)da = 1
_2

Rw(o)= ®w(_)d_= _w2

(BI_)

a(o) - ®w(°)= _2$o_ = 2__w 2 _ g( r)dr _

2Lwdw 2
= - Rw(r)dr =®w(°) _

J

Analytical Representation of Spectrum and Correlation Functions

Case I.- Equations (5) and (6) were derived by yon K_rm_n (ref. 8) essen-

tially as follows: Based on the work of Loitsianskii and others, it is reasoned

that the three-dimensional spectrum for isotropic turbulence should be propor-

tional to _4 for small values of _. Further, by dimensional considerations,

or by energy transfer considerations, it may be shown that the spectrum at high

should be proportional to _-_/3 (for large Reynolds numbers); this is a

result of Kolmogoroff and others. On the basis of these two extremes of low

and high values of _ yon K[rm_n thus introduced the following interpolation

formula for the three-dimensional spectrum:

a2 _17/6

where the two constants C and _0 define the basic overall structure of the

turbulence; their evaluation in terms of mean-square velocity and the turbulence

scale is indicated subsequently.

The substitution of equation (BI6) into equations (BlOb) and (Bi0c) leads

to the one-dimensional spectra; when these in turn are substituted in equa-

tions (BSb) and (B6b), the corresponding correlation functions are found. The
equations so found and as used in the body of the paper for Case I are:
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22/3 r _1/3 # r

Ru(r)= _u2_(1.3_9L] I/3\1.3-39L) (Bl7a)

2 3/3_ Z _113 r l r :K r

®u(a) = %2 2___ 1

_ + (l.339L_)2_5/6 (Bl7c)

2 L i + _(I.339L_) 2 (Bl7d)®w(a)= %
+(1.339 )2]ll/6

where L = Lu. The constants

c 55 L--_ O"u9

and

rfl_rf_
i _,5/ \-_J _ l

_O=T' r(_) 1.339T
necessary to establish equations (BIT) are found by application of the limit

values given by the second and fourth of equations (BI4); involved in this

evaluation is the use of the following gamma function relations:

x:= r(x+ l)= _(x)

r(_)r(l- x) -
sin _x

It is important to note that all equations (B17) are expressed arbi-

trarily in terms of the longitudinal scale L = Lu, even though equations (Bl7b)

and (Bl_d) apply to the transverse velocity component. Thus the scale L

deduced in the body of the report refers to the longitudinal "scale," not the

transverse scale (see eq. (BI3)).

Case II.- The correlation and spectrum functions, equations (7) and (8),

for Case II are established in a manner somewhat inverse to that of the pre-

ceding section as follows. With reference to turbulence studies made in wind

tunnels_ exponential laws have often been used to fit the measured correlation
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data. One function chosen in particular for longitudinal correlation is the

following:

Ru(r ) = du2e -r/L/ (B18a)

Then from equations (B4a), (BSa), and (B6a), the transverse correlation and

associated spectral functions may be deduced; specifically_ the following equa-
tions are found:

0Rw(r ) = dw 2 _ r e (B18b)

2L 1 (B18c)
¢u(2) = du2 _ l + L22 2

L i + 3L222

®w(_): _w2 _ (1 + L_a2)2 (mSd)
Again_ it is to be noted that all equations are expressed in terms of the lon-

gitudinal scale L = Lu.

It is of interest to see what three-dimensional spectrum is implied by

equation (BiSa). If equation (BISc) is substituted into equation (Bl0a), the

following expression for E(_) is found:

2 8L L4_ 4

E(_) = % _- 3 (mg)
(1 + L2* 2)

Interestingly_ this equation is in accordwith the requirement that for small

values of 2_ E should behave as 94; for large values of 2_ however_ it

exhibits a 9-2 variation in contrast to the more appropriate 2-5/3 varia-
tion for Case I.
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APPENDIX C

EFFECT OF EXTRANEOUS SIGNALS ON SCALE DETERMINATION

The deduction of turbulence velocities from vane and airplane motion

measurements by such means as equation (4) requires consideration of extraneous

signals. In particular_ one cannot be certain that all the airplane motion

effects are eliminated_ especially the very-low-frequency and d-c components

which might result in spurious gust velocities. The problem is to determine

what effect possible residual motion can have on the deduction of such param-

eters as turbulence scale. This problem is examined to some extent in this

appendix.

Consider that the turbulence-velocity time history established by equa-

tion (4) is represented by the equation:

Wr(t ) = w(t) + e(t) (CI)

where w(t) is the time history of the vertical gust velocities that would be

obtained if they could be measured perfectly (the uncontaminated values) and

e(t) is the spurious gust velocity due to residual motion.

If w and e are uncorrelated_ the autocorrelation function for w r is

Rr(r ) = R(r) + Re(r ) (C2)

while the spectrum is

@r(n) = @(n) + @e(n) (C3)

where the independent variable is distance instead of time. Obviously, the

derivation of parameters, such as the scale of turbulenc% depends on the nature

of Re(r ) or on the distribution of power in Ce(_).

To establish possible effects_ a specific type of error e will be con-
sidered in the remainder of the treatment. The waves that can be seen in the

correlation function shown in figure ii suggest that the turbulence-velocity

deductions may contain a small periodic component_ which might result, for

example_ if traces of short-period motion remain in the final time history.

Thus, specifically assume

e(Vt) = a sin _oVt (C4)

For this case, equations (C2) and (C3) become

a2

Rr(r) = R(r) + -_- cos _0 r (C5)
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a2 a2

where the symbol 5 is a Dirac delta function.

If the scale is deduced from equation (C5) in accordance with equa-

tion (ii), the following equations result:

_0 rl R(r) Rr(O) _ forl Rr(r) a2 l_L = 2 _ dr - R(O) Rr(O----_ dr _oRr(O ) sin _0 r = 0.746r I

(c7)
Graphically_ this equation appears as

L (correct)

_ 0"7_6ri _ L (if deduced from
Rr(r))

r rISketch 1

where the solid curve refers to the integral on the left of equation (C7) and

the dotted curve to the integral inside the brackets_ the dash-dot curve repre-

sents the net quantity contained in the brackets. From this sketch and equa-

tion (C7), to a first approximation_ the uncontaminated value of L is given by

Rr(O)
L - Lr (C8)

R(o)

where Lr is the scale value as deduced directly from the derived or impure

vertical velocities} the ratio in this equation is found from equation (C5)
to be

Rr(O) = 1 : __L (C9)
2 Lr

i a

2Rr(0)

as will be used subsequently.
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In contrast, if the scale is deduced from equation (C6) in accordance with

equation (16), consider the following: Graphically the spectral functions of

the assumed sinusoidal error signal e appear as follows in sketch 2(a):

a2I

J-TI

I
!

I

-20 2 0 ,Q

Sketch 2(a)

®e(a)

/// \ "'_

/i a2
/ I AI 1._._ × _

i i 2Z_ 4
z I

f I

Sketch2(b)

Sketch 2(a) depicts the Dirac delta functions that apply theoretically. In a

numerical analysis_ however_ these Diracs would be "smeared" out since they_

as well as the main spectrum ¢(_)_ would effectively pass through the filter

shown in figure 25_ the result would be more like the pattern shown in

sketch 2(b). The actual filter shape is nearly triangular and has minor lobes

but is approximated here for convenience by the single triangles shown. The

presence of this error spectrum, of course, influences the mean-square values

of velocity that are deduced. Specifically_ the overall mean-square value

would appear

= a2 (clo)w,r _w2 + 7
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Remarks

y(t) _ ./_J/_ /_A _,_ J------ Must accept finite

0 TL le_ gth record,

Rtrue(W) Iflag r approaches T L then

___ _ obviously RT esti.......... poor;RT(_) = -r _ 4 = _ x thus _max must be small compared
max Tmax -_max Tmax with T L for reliability.

"Box car"

@true (_) tz-uncation

_ * _v _ sin _rmax The bandwidth of lilt "_p i.... .....

2_--_ wlndow f'causes "s_lea.ring" of

^ _ spectrun_ estimates (reduced_(_)

v, ,_ _ frequency resolution); lobes of
-_ _ w _ _-- Z__ filter cause "leaking" or "diffusion"

max of power from adjacent frequencies.
"Filter" introduced

by truncation

A¢(¢o) es dv

_ , __-- *Denotes convolution.v

(a) Finite continuous sam!oles.

Y(f} -_ ./_ _J_ i%emarks supplementary

TL t_ tho_e in figur_ _5_

RT(T) = _ = .___/_ × ___ Weighting leads to aa
-Tma x Tlnax "rmax max huproved filtershape.

Weighted

_'true(_) b'unc atiol_

but leaking has been

_(_} _ = • rnirdrnlzed.

Tm_x

Improved filte_-

_(_) = 1 times v

(b) Modifications to improve filter.

y(t) _9_ w_//_ _ /_ k Remarks supplementary to
those lu figure 25(a) and (b);

Rtrue{T)

_f(T) _ = _ _' e effective filter with
- max l_laX = Tn]ax ilna_e_.

Weighted

ctrue (_) "dirac comb"

___ _ There is still ',s ...... ingl "

leaking dtte to the minor

¢(_) = = , lobes is minimized, but

_0 __ __ 4_ there is now "aliasing"
?max due tO images.

Filter wi_ infir/te

array of ',images,,

_ore defimitively:

i f _ / qs(v) _ v
-- times w dv

"rma x me

(c) Finite record with interval sampling.

Figure 25.- Practical evaluation of records.
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If the lower truncation frequency _i is higher than the frequency _0,

then the mean-square value obtained from the record would be

d2
l,r = dl2 + 2AI (CII)

where

AZ =-g-- - 2Z_ J

and where _w and dI are the overall and truncated rms values that would be

obtained if the record contained no residual errors.

In accordance with equation (16), it follows that from the deduced Lr,

the corrected L would be given by

L = Lr

°l,r/

which from equations (CI0) and (CII) may be written

a2 _/2

L = r } Lr (C12)
2A I c_2,

2,

To illustrate the possible effects on scale deduction, consider the case

of the spectrum function in figure i0, and the associated correlation function
!

in figure ii (note; in the terminology of this appendix, figure ii
represents

\

_r(r) R(r)_
a plot of Sr(_' not of _(--t7]"Assumethat the distortio_ show_in the corre-
lation curve is due to an error of the type given by equation (C5); the fre-
quency _0 is about 0.0016, and the use of the equations in the range where

Rr(r) and R(r) should be near zero indicates that a2 is in the range
Rr(O) R(O) 2Rr(O)

of 0.02 to 0.04. With this value for _0, which happens to coincide with _i

used in the computations, the filtered error spectrum would appear
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I

JlJ1 21 1 X_

,// 4

_i = _0 = Zk_ = 0.0016

Sketch 3

From sketch 3, AI is seen to be a2/$; equation (C12) thus becomes

2_2_ r
L = Lr

a2 - (C13)
2

4_w, r _1, r/

For the case considered, _w_r = 2.41, values of scale as deduced by equa-
_1, r

tions (08) and (013) are given in the following table for various assumptions

a2

( = Rr(O)) The values of Lr are those given in the
of 2_2, r note, _2, r

table included in the section entitled "The Evaluation of L."

Corrected scale, L_ ft
a2

2a2 r From correlation (eq. (C8)) From spectrum (eq. (C13))
with Lr = 5_720 with L = 5,550

O. 02 5,840 5,890

•o3 5,90o 6,o8o
•04 5,960 6, 280

This analysis indicates that if a periodic error signal is present in the

deduced vertical gust velocities_ the correct scale of the turbulence may

actually be larger than the scale value derived from the impure signal_ con-

trary to what might be expected. Whether fortuitous or not_ it is seen that

the corrections derived herein lead to better agreement between the values of

scale derived from the correlation and spectrum function.
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The presence of a low-frequency periodi c component in the evaluated gust

velocities is not certain. If such a residual component does exist_ a marked

deterioration of the coherency function (see appendix D and table III) in the

neighborhood of _ = 0 would result. This reduction has been observed in some

analyses (see refo 4). The analysis in this appendix shows_ however_ that even

if a periodic error of the type assumed is present in the vertical-velocity

values_ there is negligible influence on the evaluated scale of turbulence.
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APPENDIX D

ACQUISITION AND INTERPRETATION OF DATA

BASED ON POWER SPECTRAL TECHNIQUES

Introduction

This appendix deals mainly with the analysis of linear systems which are

in a random-process environment. The aim is to outline the major considera-

tions that are involved 5 firs% in the design and conduct of experiments with

a system in this environmen% and second 5 in the analysis and interpretation

of the acquired data. The subject matter has an exceptionally wide scope and

has entered into many fields_ although it dates back many years_ widespread

application in the aeronautical and aerospace fields is relatively recent. The

first six sections of the bibliography are representative of notable contribu-

tions in these fields; references i and 2, specifically 5 are summaries which

show some of the main applications to airplane dynamics. Reference 255 in

particular_ gives an overall consideration of the application of statistics to

the flight-vehicle problem. Although it does not delineate the turbulence char-

acteristics of the atmosphere or the behavior of the airframe systems 5 it is a

comprehensive compendious report on power spectrum concepts. This appendix

presents a review of the main aspects of random-process phenomena and analysis

which includes some details that might be helpful so that the individual mainly

interested in application can grasp the general procedure and appreciate the

significance of the various steps.

Objectives of Experiment

Random-process experiments may be divided basically into two broad areas

(i) Laboratory experiments

(2) Field experiments; for example 5 flight tests

and_ with each of these 5 the data-collection procedure may be classified in
two categories

(a) Establishment of a single time-history record which is to be analyzed

by itself

(b) Establishment of a set or ensemble of records (as in the consideration

of a number of segments of a long time history or as obtained in

repeated tests analogous to the situation of a series of coin

tosses).

In the following discussion 5 attention will be restricted mainly to the

flight experiments and to the establishment and analysis of single time-history
records.
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Consider that the flight vehicle system that is undergoing a random

forced-excitation test is represented by the following schematic:

nl(t) xl'(t )

xl(t ) - t_Yl(t )

_y(t) , = y'(t)

x2(t ) ....... _ H 2 t''Y2 (t) /L ....

n2(t)

The main input and output of concern are xl(t) and Yl(t), respectively. In

measuring the input Xl, noise nl(t ) enters and gives Xl'(t ). Another input

x2(t), which is not really known, may enter and give an output Y2(t) which

adds to Yl(t) and cannot be separated. Further, the measurement of y(t)

may be contaminated by another noise source n2(t ) to yield y'(t).

In making a test or repeated tests with the system, the final use of the

data is an important consideration; the data may be used to:

(i) Establish dynamic environment for system

(2) Verify predictions

(3) Study fatigue

(4) Investigate human comfort

(5) Study any combination of items (1) to (4)

Specific objectives of items (i) and (2) are as follows:

(a) Given Hl and y'(t), deduce the nature of xl(t )

(b) Given xI' and HI, deduce the nature of Yl(t)

(c) Given xI' and y'(t), deduce HI

The material that follows deals with the interpretation of these specific

problems from a statistical point of view considering that extraneous signal

sources are present.
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Elements of Problem

Environment.- Take as an example the responses of jet-powered airplanes.

Consider_ first, the environment and list what is known about it. Tables IV

and V give dynamic-loads input and vibration-source information of the type

that might be listed. This information provides a qualitative description of

the excitation forces that are involved_ and hence gives an indication of what

the loads or structural-excitation problems might be. For jet noise and

boundary-layer turbulence, the concern will be primarily structural panels,

fastenings_ and possibly instrument behavior. For gust loads_ overall struc-

turs_l integrity is of concern and involves the climb, cruis% and descent por_

tions of flight. For space-flight vehicles an analogous listing may be made

to indicate the nature of the forcing functions that must be considered_ meas-

ured_ and analyzed. In any case the first step is to define the excitation as

to the source_ frequency content_ severity_ and duration so that the effects

on the system can be considered in the light of this excitation.

System.- It is necessary to identify the areas or parts of the structure
that are likely to be affected by the environment. One should be familiar

with the response characteristics_ particularly the natural frequencies_ mode%

and associated damping_ and how the excitation is applied - whether by direct

impingement or by structurally borne excitation. In general_ the interest is

in those modes which fall within the frequency spectrum of the input excitation

and in whether the physical mechanism exists for exciting these modes; the

latter point is often elusive. Modes often have frequencies which fall well

within the frequency content of the excitation but are not excited because of

large damping_ or an averaging-out of the input forces, or their excitation may

be secondary to other modes. A main objective of many experiments is to find

out just what modes are excited.

Instrumentation.- One may distinguish two types of instrumentation - that

used in the tests to measure and record_ and that used in the subsequent anal-

ysis of the test records.

The measuring equipment used depends_ of cours% on the test objective and

for flight vehicles includes such items as pressure gages_ strain gages_

accelerometers_ position indicators, gyros_ and flow-direction vanes. Data are

collected by two basic schemes: (i) onboard recording using recording oscillo-

graphs or magnetic tapes 3 and (2) remote recording using telemetering techniques.

In general, the telemetering of data imposes a greater restriction on the fre-

quency range_ dynamic range, and the number of sensorsthan the direct-

recording method.

Data analysis may be digital or analog or a combination of the two.

Digital analysis has been greatly facilitated by the modern high-speed computers.

Analog analysis involves the use of a wide variety of common and special or

unique instruments. This equipment includes voltmeters (including many rms

instruments having various time constants and frequency responses)_ random-

noise and sine-wave generators, band-pass filters_ squaring circuits_ spectrum

analyzers_ and probability density analyzers. Because the unique instruments

such as spectrum analyzers and probability density analyzers are not generally
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available, most of the discussion in this appendix will be slanted toward the

digital- computing approach.

Whether for recording or analyzing_ consideration should be given to the

pertinent characteristics of the various instruments, such as range, frequency

response, linearity, sensitivity_ temperature sensitivity, and transverse

sensitivity.

These characteristics are of concern, first, from the viewpoint of making

certain that the transducers and. recorders are selected with care so that they

cover adequately the frequency range of the structure and of the forcing inputs

as well as the expected amplitude ranges, and second, to appreciate fully the
measuring and reading errors so that the effect of these errors on data inter-

pretation can be assessed. As an example of one means for assessing the effect

of instrument errors on results, see the study Contained in reference 4.

Record evaluation considerations.- This section indicates briefly the

steps that are involved in a record evaluation procedure.

Data analysis is divided logically into the two categories: (1) analysis

of the statistical properties of a single time history and (2) analysis of the

statistical properties of a collection of records.

Figures 26 and 27 are reproductions of the general procedure recommended

in reference 2 5 for analyzing individual vibration records. Each step is

ANALOG SAMPLING C O OBVIOUSLY NONRANDOMA VIBRATION OEVlCE O
STORAGE AND QUICK LOOK INVESTIGATION FOR

VIBRATION (TIME HISTORY SIGNAL WITH PERIODICCOMPONENTS REMOVED PERIO01C COMPONENTS
TRANSDUCER T VISUAL DISPLAY) AND SEPARATION

INUOUS SAMPLING OF PERIO01C AND

NONPERIGDIC DATA

TEST FOR

RANDOMNESS

_ _ SP_ECIALIZ._ED_ANALYSl_S_ _ _ 1 N_0 N SE .......

......... DOM _:ERMIOgICENTS

_TOCORRELATION I. F

ANALYSIS ROOT MEAN SQUARE TEST FOR

LEVEL ANALYSIS STATIONARITY

I L" FDISTRIBUTION ' _ _ ' ..... _ S" ] [ R"

......... I I ..................... .II............_ ....................

i DATA ANALYSIS DATA ANALYSIS
ANALYSIS I

t

AMPLITUDE

EXTREME DENSITY ANALYSIS DENSITY ANALYSIS
VALUE

ANALYSIS

TEST FOR

NORMALITY

THRESHOLO
CROSSING

ANALYSIS _ iF THE PROBABILITY OERSITY FUNCTION I$ NORMAL, T_
OATA SIGNAL t$ STRONGLY SELF-S_TIONARY

OSCILLATING
MEAN

ANALYSIS

OldER FUTURE

DATA ANALYSIS

Figure 26.- Recommended procedure for analyzing individual vibration records (from ref. 25).
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weaklys°lTtati°n YI
I Strongly self-stationary ]

I E .... ble i _ Nonstatih .... y ] [

of J We_kly stafli.... y _ Weakly ergodic I -_"
records _ -i _ , Flight

I Strongly stationary ___ Weakly ergodic specificationand

strongly st_ti.....y $

!
Stl-onglyergo B.

Sample length
Figure 27.- Categoriesfor singlerecordsand determination_

ensembles(from ref. 25). mean time

between samples
discussed rather fully in this reference. Since the chief |

concern herein is random phenomena, main interest in the

diagram is from block F (fig. 26) on, and subsequent dis- c°Number of
Cussion in this appendix will provide some insight as to what

samples for
is involved in analytical procedures for executing these unexpected
steps. It is remarked however_ that an invaluable step in events

the overall procedure is the "quick-look analysis" indicated |

by Step D_ whether by oscilloscope presentation or by visual

inspection of the records. Do
Number of

samples to
Figures 27 to 29 indicate the gener_l procedure recom- containfraction

mended in reference 25 for handling a set or ensemble of ofpopulation

records. A discussion of each step with the associate sta- |
tistical mathematics is also given. Of fundamental impor-

tance in the consideration of repeated experiments and ran- I E.

dora sampling is the data-collection process. Of concern are I Selectoverallsampling scheme
the concepts of acceptance or rejection of records_ the !

appearance of unexpected events, the number of samples

required_ and the consistency by which experiments are I F.

repeated involving_ for example, the use of the same pilot, IImplement scheme;the conduction of flights in different weather_ the use of collect,data

different airplanes of the same type, the variability during
any one flight, and the use of different missions. O.

Analyze data for:

Aside from determining the actual statistics of the i. Unexpected
events

process being investigated, much of the analysis may be con-

cerned with ascertaining only the nature of the process, z. Range ofyalues
such as (1) randomness, (2) stationarity, (3) normality,

(4) ergodicity_ and whether the estimates are unbiased and
consistent.

Figure 28.-

Fundamental in the analysis of any record or group of Recommended

records is the consideration of the errors and noise in the procedure for
selectionof

entire system. These errors may be classed in two groups: sampling
(a) statistical estimation errors and (b) equipment errors, scheme (from

The basic aspects of statistical sampling such as the length ref. 25).

of the record_ the frequency content and the intended use
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° L/J °Random Repeat flights:
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sampling over I I variable _ R.Examine

entire flight I ; mission Variance Unequal (_) assumptions,
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I instruments.
Equal

G.

Compute two

estimates of

variance

L " ,Pooled data Pooled data Pooled data Equal F-test for Unequal Between flight

tolerance I - I variance I TM mean J- [ equal means varianceinterval I I estimate / estimate estimate

Unsatis- I L. I
O.

factory I Comparison of I Pooled data withinresults with
I a priori values I flight variance

Satisfactory estimate

• I i 'rM • I Individual P"
Comparison of
results from I flight tolerance _ Overallmean

blocks A and BJ intervals estimate

Figure 29.- Recommended procedure for analyzing collection of vibration records (from ref. 25).

of the data are discussed in some detail in the following section. In addition_

some details of the equipment errors such as instrument errors_ extraneous sig-
nal errors_ and computational errors are also considered.

Procedures and Statistical Reliability

The following discussion proceeds on the basis that the process under con-

sideration has been established as random Gaussian_ and at least weakly sta-

tionary_ and covers some of the mathematical techniques indicated in the blocks

following block E in figure 26.

Mathematical representation.- Table I gives a summary of the equations

that are involved in the analytic treatment of random time-history functions.

Generalized harmonic analysis is the basic technique involved. For comparative

purposes analogous equations that appear in the more commonly known analysis
techniques are also shown.

Two basic principles underlie the generalized harmonic or power spectral

approach

8O
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(i) That a concise picture of the nature of the random process being

analyzed is obtained by representation in the frequency plane

(2) That quantities relating to the statistical characteristics of the

time history are directly obtainable from this frequency-plane representation.

For principle (2) the columns pertaining to statistical information are also
included in table I.

Input-output relations.- Tables II, VI s and VII indicate the basic input-

output relations that are involved in power spectral treatment. Table VI gives

the fundamental equations and, for comparison s shows the analogous equations

that pertain to other basic techniques. Table II illustrates the input-output

relations in application to gust loads on aircraft. One of the details brought

out by the table is that the frequency scale may be expressed in various terms

depending on the particular phenomenon under investigation. For the atmospheric

gust problem, it is usually most convenient to make use of a spatial frequency
defined in terms of sinusoidal wavelengths as shown, that is, 2 = 2_/_. This

is in accord with Taylor's hypothesis. Three basic frequency arguments may be

used: _ the circular frequency, f the frequency in cycles per second, and

the frequency in radians per foot. (Another parameter_ the reduced frequency

k = _c/2V as used in flutter may also be used.) These frequencies and asso-
ciated power spectra are related as follows:

= 2_f = V2 = V 2____

= ! ®(f): i
2_ V

Table VII shows a summary of the input-output situation with respect to a

single-degree-of-freedom system for inputs having various characteristics.

Factors in practical evaluation and statistical interpretation of power

spectra.- From a practical point of view it is not possible to analyze random
time histories in strict accord with the governing equations. In general s the

determined spectral values are altered statistical estimates of actual values;

the extent of the alteration and the statistical reliability are dependent on _

the reduction process used - whether digital or analog. Fundamental in this

consideration are the length of the record and the method by which the record

is processed. The following discussion is intended to give some insight to the
nature of the distortion and the quality of the estimates that are obtained.

The discussion applies mainly to a digital approach, but similar considerations

apply to the analog case.

The three parts of figure 25 (see p. 71) illustrate some of the main con-

sequences of practical analysis. Most of the aspects should become evident by

studying the sketches_ by a comparison with the exact mathematical expression

in table I and by referring to appendix E. The following explanatory comments

are offered to pinpoint additional salient points:
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Prewhit ening:

With reference to lower sketch of figure 25(c), consider that the main lobe
of the filter of the "spectral window" is placed at _, as in the determina-
tion of the spectral estimate at this frequency. Also assume that the spectrum
has very large power at low frequencies, as is often the case, even though the
time history is expressed in terms of zero mean values. Then the side lobes

of the filter, even though designed to be small by weighting of the correlation
function, permit the power at the low frequency to leak or diffuse causing con-
tamination or distortion of the power estimate being determined. This leaking
is avoided in large part by first prewhitening the time-history data so that
the power is distributed more evenly. Spectral estimates are then made of the

prewhitened data, after which a postdarkening operation is performed to compen-
sate for the initial prewhitening. The numerical procedure for prewhitening,
making spectral estimates, and postdarkening is given in appendix E.

Aliasing:

Figure 25(c) shows that interval sampling of records leads to a spectral
window with images. Spectrum estimates being made at a frequency _ therefore
become distorted since these images permit a transfer of the spectrum power

present at frequencies _ ± _0, _ ± _<°0 .... This phenomenon is known as

"aliasing." It may be described in another way by reference to the following
sketch:

A

At the sampling interval of e indicated in the sketch, it is not possible to
distinguish whether the wave with frequency 60 or the wave with frequency

60 + 2£00 = 60 + 2_/e is present. The frequency 600 is commonly called the

Nyquist frequency.

The problem is avoided in practice by selecting a frequency 600 such that

ostensibly there is negligible power above this value, and then by determining
the sampling interval according to the relation

E = m
_0

This equation evolves from a communication-sampling theorem which states that

sampling with this interval will resolve frequencies up to _0" The choice may

not always be practicable, however, and in such event, consideration must
instead be given to the removal of the power at the higher frequencies either

82



by rejection in the measuring instruments or by filtering the recorded
measurements.

Frequency resolution:

The filters indicated in figure 25 also cause a "smearing" of the spectrum

estimates so that at best the estimates derived represent an average value over

the effective bandwidth of the filter_ which for the nearly triangular-shaped

filter shown is approximately half the base width. The frequency resolution

is this bandwidth (2_/Tmaxl - that is, independent spectral estimates cannot

be made for frequencies_-'spaced closer than 2_/Tma x. The figure shows that the

filter width may be decreased by increasing Tma x = me, which means increasing

the number of correlation-function estimates. However_ this increase will

decrease statistical reliability_ as discussed subsequently.

Coherency:

In block 7E of table I, the equation

2

72( )=

defines the coherency function 72(_)_ which is a measure of the degree to which

the x and y processes are linearly related. If the two processes are in

perfect linear relation_ 72 is unity for all values of _; if they are lin-

early independent or incoherent_ 72 = 0. For a partially linearly related

process_ as is the case when extraneous noise is presen% 72 will be between

i and 0.

If the spectral input-output relations shown in table VI are substituted

in this equation_ the coherency function becomes

72( ) =

where H c indicates the frequency-response function derived by use of the

cross-spectrum equation_ and H s the frequency-response function derived from

the equation involving power spectrum only. Consider this equation in light of

the experimental objectives mentioned at the beginning of this appendix. If

He and Hs are determined from the experiment and yield a 72 value of

appreciably less than on% then a danger signal is provided which indicates

that either one or both of the estimates are unreliable. In general_ reduc-

tions in coherency reflect a loss of reliability in two distinct ways_ namely

(see fig. 30):
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_ . _,_T_oT,_. (i) A possible distortion in the esti-

Hff) mates of the frequency-response function
IH(f)l, from its true value

IHc(f)lI/, , , 7 "_ -He(f) (2) A reduction in the statistical
0 i 2 3 reliability as measured by the width of the

f, CPS associated confidence bands.

(a) Possible distortion of frequency-
responsefunction. The basic mechanism leading to distor-

tion is the presence of extraneous "noise"

signals, such as pilot-control motions,

/_, 90% CONFIDENG_ instrumentation limitations, random errors

iHc(fll ,_'/_// -Hc(f "\,, ," .... - in record reading, round-off errors, andi__// the effects of other gust components such
>/ as side gusts (see system sketch in section
' I I I I I I

o I 2 3 entitled "Experimental Objectives" in this

f.cPS appendix). The nature of the distortion

depends, of course, on the character of the

(b) Reduced statistical reliability, noise and whether it affects the input or

Figure 30.- Effectsof reductionin output signals. Several types of noise are
coherency on frequency-response examined in reference 4 to determine their

functions, effects on the coherency function and to

establish how these noises distort spectral

estimates or frequency-response evaluation;

table III summarizes some of the results. It should be noted that for the

special case of noises which are incoherent (unrelated) to the input or output

signals (which fortunately appears to be the case in practice), the results are

particularly simple.

A significant point to mention is that in some cases when the nature of

the noise is known_ corrections for the distortion are possible; the last column

of table III lists the appropriate expressions for making these corrections.

A recovery of uncontaminated estimates of the frequency-response function may
then be feasible.

With respect to statistical reliability_ losses in general cannot be

recovered. The following section indicates the interrelation between coherency

and statistical reliability.

Statistical reliability:

In consideration of the statistical reliability, assume that the experiment

has been repeated many times. From the power spectrum estimates that are eval-

uated, a probability density distribution may be formed at any given frequency
as shown in figure 31. The itemized information in this figure applies to an

assumed normal or Gaussian distribution. Based on this assumption the results

of reference 26 indicate that the spread of the distribution, as measured by _i

(see item 1 in fig. 31), depends on the length of the record and the effective __

bandwidth of the filter (or 2_/Tma x in fig. 25(a)), or alternatively on n

and m, the number of time-history readings and the number of correlation-lag
times. The confidence band within which the average value may be expected to
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i. Values of _i at m = _i have a standard deviation _i

given by

_i _12 _ record) (Zko)_-I/2@i (length of

= (Tmax 1I/2

2. Based on normal distribution, average value of ¢i may be

expected to fall within the confidence band defined by

@i ± k_i

with probabilities as follows

Probability
k level

1.0 0.68

1.65 .9o
1.96 .95

2-58 .99

3- For given values of _ and for probability set by kj

2n
or_ as indicated below with K = _-_ the statistical

degrees of freedom_

_ __ 95 _ confidence

L _ ---- 90% confidence
i i I I

0 i i0 102 103 104 105

2n
m

Figure 31.- Statistical reliability of

spectrum estimates.
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fall with a given level of probability is indicated in general terms in item 2
of figure 31. From items 1 and 2, item 3 gives the confidence limits of the

quantity ¢m/¢aw where Cm refers to a measured value of the power spectrum,

and _av represents the average of the power for this frequency. The abscissa
2n/m of the graph in item 3 denotes the number of statistical degrees of free-
dom. As an example of the use of this plo% assume 2n/m = lO0; then for
95-percent confidence

i 1.96_¢+ 5_J av = 1"277¢av> Cm

?av: <
or

1.38% > Car> o.78%

That is_ the average power can be expected to be between 0.78¢ m and 1.38_ m

with a probability of 95 percent.

The statistical reliability of frequency response (Hc(_) or Hs(_))
derived from spectra of Gaussian processes depends on n and m as presented
in the preceeding discussion and also on the coherency function _2(_) between
the measured input and output responses if noise is present (ref. 27). The
effect of these quantities can be expressed in terms of a range of values
within which the average or most probable value of the response H(_) will
fall with a given confidence level. Figure 32_ taken from reference 4, gives
the 90-percent confidence bands for the quantity

I
+_E1 = i00

which is the percent error in the amplitude of the frequency-response function_
and for the quantity E2, the error in the phase angle. As an example of their

application, for n = 13000_ m = 60_ and 72 = 0.90_ the percent error E1

in the amplitude is +-i5 percent. Thus 3

< I- <

with a probability of 90 percent. From this equation_ it follows that the
associated 90-percent confidence band for the true value of the amplitude of
the frequency-response function H(_) is given by

86



The error in phase E2 for this example is E 2 = -+0.15. Thus the confidence

band for phase angle is given by the interval defined by the measured phase
angle plus and minus 0.15 radian.

3

72 : 0.25 72 : 0.50 72 0.75 72 0.90
-- i00

%N m50 < - -

-O

©
o 0 I i i I
,q

i00 1,000 i00 1,000 i00 1,000 i00 i_000

Effective sample size, n - m

(a) Amplitude: confidence interval = He(C0) ± .

72 = 0.25 72 = 0.50 72 = 0.75 72 = 0.90

i00 i _000 ZOO i _ 000 i00 i _000 i00 1,000
o

Effective sample size, n - m
©

&
(b) Phase: confidence interval = phase angle ± E 2.

Figure 32.- Ninety-percent confidence interva2ks for ar_litude and phase of estimates of frequency-

response function for various values of coherency.

Procedure for selecting n and m.- Based on the information contained
in the foregoing sections and for convenience in the planning of experiments,
the following procedure is suggested, where digital analysis of the data is
assumed (see also appendix E) :

(i) Choose _o0 so as to have negligible power outside of eX); this fixes

the time-history sampling interval as

_o

(2) Assume a practical and desirable record length TL, then the total num-
ber of time-history values is

TL
n =
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(3) Consider frequency resolution Z_0; it is determined by computational

filter-band width which is effectively one-half the base width_ or

z:ku - 2_ _ 2_
Tma X mc

where Tma x is maximum correlation-function shift. To have good frequency

resolution, m ought to be large (m = n being the best)

(4) However_ for statistical reliability_ the number of statistical degrees

of freedom defined by

2n
K _ -- for interval sampling

m

2T L
K = _ for continuous sampling

Tmax

should be large. (See figs. 31 and 32.) Therefore, for good statistical reli-

ability, m ought to be small.

(5) Compromise between (3) and (4). As a guide, the numbers which have

been commonly used with success for gust spectra and which do not involve

excessive computation labor are: n from 1,500 to 4_000 and m from 40 to 60.

(Note, with n = 3_000 and m = 40_ the number of statistical degrees of free-

dom is 150. )

(6) If TL is arbitrarily large, then the situation is more flexible; it

is possible then to attain arbitrarily high resolution as well as good sta-

tistical reliability. After establishing _0 and c, choose m to give a

desired (but reasonable) frequency resolution. Thus choose a desired K_ the

number of statistical degrees of freedom. Now determine n = mK/2. Then

establish the necessary record length TL = nc (the chief concern in this

procedure is that n and TL do not become so large that excessive analysis
time is required and that stationarity of the process is not invalidated).

Postexperiment analysis.- The analysis procedure to be followed after the

experiment has been conducted depends_ of course, on the objective of the exper-

iment. On the assumption that the experiment was conducted to determine the

frequency-response function of the system_ the following basic steps are
involved:

i. Establish input and output time histories from measured quantities.

2. Evaluate power spectra of both the input and the output and the cross

spectrum of the input and output, as outlined in appendix E.

3- Determine [Hs(_0) [2 and Hc(_0) from equations shown in table III or
table VI.
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4. Determine coherency function 72(_), table I or table III.

5-If coherency 72 is near unity, estimates of IHs(LO) l2 and Hc(_0)

may be considered satisfactory and reliable.

6. If coherency 72 is appreciably less than unity, consult figure 32 to

determine statistical reliability.

7- If reliability is judged not satisfactory, examine experimental proce-

dure, recording instruments_ adequacy of record length, and record reading in

detail to try to ascertain whether distortions arise primarily from (a) noise

in the input, (b) noise" in the output, or (c) from a secondary input. If one

of these three cases seems evident, then uncontaminated estimates of the

frequency-response function may be obtained by use of the appropriate equation
in the last column of table III:

8. If sources of error and distortion cannot be located_ try to make a

better experiment.
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APPENDIX E

DETERMINATION OF POWER SPECTRA AND CROSS SPECTRA BY DIGITAL METHOD

The procedure for determining the power spectrum of vertical gust velocity,

for exampl% from n equally spaced readings for increments of time At = e,

is as follows. First_ estimate the frequency _0 above which there should be

negligible power and then determine the sampling interval as a convenient value

near that given by the relation e = _/_0" (For vertical gust velocity, exper-

ience has shown the _0 = 0.i is near the upper value of concern; this would

indicate an e = _/V_ 0 = _/0.1V for this case.) Then perform the following

steps:

For Spectrum Determination

Step i.- Determine time history of Wg with zero mean for equally spaced
intervals

_0 t
Wg = V(_ v - _v) - V(0 - _) + (a z - _z)dt + w0 + Zx(@ -_)

where w0 is the initial value of airplane vertical velocity.

Step 2.- Prewhiten values of Wg (response spectra usually do not bene-

fit from prewhitening)

$(t) = Wg(t) - Wg(t - e)

(see ref. 4).

Step _.- Estimate values of autocorrelation function _w(T) for m + i

evenly spaced values of T from 0 to me by numerically integrating

_ 1 F TL-T _(t)_(t + m)dt(T) -- - T o
n-p

that is _^ 1 _' ^ ^R_,p - n - P _ WqWq+p (p = 0, i, . m)
q=l

TL T t

where n = e---_ p = _ and q = _.

Step 4.- Obtain raw estimates of the spectral power by numerical evalua-
tion of the Fourier transform of the autocorrelation function
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m

2e _ _ hp_ m)= -/ %_, p cos m (h= 0,l,
p=O

where

h=____
_o

i (p = 0, m)ap=_

% = i (p_ o,m)

Step 5-- Obtain smoothed estimates of power of Qg (from ref. i)

1 1 (h= O)
_0 = _ LO + _ L1

1 i i (i< { l)<_n= _"Lh_l+-Lh2 + _-Lh+1 : h _ m -

i 1 (h m)
Cm = _ Lm-i + _ Lm =

Step 6.- Postdarken smoothed estimates of power to obtain final estimate

of power spectrum of Wg

Ch ( _h h 0)¢w(_) = /_ _h\ =em - m
21± - cos

m]\

For Cross-SpectrumDetermination

Step i.- Determine time histories with zero mean for equally spaced

readings for both input Wg and output y_ as in the spectrum determination.

Step 2.- Prewhiten input time history (see step 2 above) to give Q.

3.- Estimate values of cross-correlation function R_y(T) for bothStep

positive and negative lags. (See step 3 above.)

n-p

i

> 9qyq+p (p =-m, -(m- i), . ._Y, P n - p
m)

q=l
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Ste_4.- Obtain raw estimates of the co-spectrum and quadrature spectrum

m

_h - c _ [_pd. )-]] hp_ (h = O, 1, m)-_ ap (p) + _(-p oos_m

p=O

m

qh = _- ap (p) - R_y(-p sin hp_ (h = O, i, m)m

p=O

where

i (p = O, m)% 2

_p = I (p _ O, m)

Step 5.- Obtain smoothed values ¢^ (co) of prewhitened cross-spectrumwy
estimates as in step 5 for single spectrum.

Step 6.- Postdarken ¢_y(co)

CwY (co) - ¢_Y(co)._h (c_ - _h _hem m COO)
mi - e
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APPENDIX F

ANALOG EQUIPMENT FOR ANALYZING RANDOM FUNCTIONS

Listed in this appendix are sketches of some of the analog equipment used

in random-process analysis. Schematics for determining the following are shown:

(a) Power spectrum

(b) Cross spectrum

(c) Mean-square value (variance)

(d) Probability density

A brief analysis is made of the power spectrum analog to indicate the nature of
its functions.

Determination of Power Spectrum

From an analog computer standpoint_ the power-spectral-density function

_y(_) associated with a single random function y(t) is defined as the lim-

iting value of the mean-square value of the signal which comes from passing the

signal through an ideal bandpass filter with center frequency _j divided by

the bandwidth Zko_ as the bandwidth approaches zero. Accordingly_ analog

equipment for power-spectrum determination is usually built as illustrated in

the following diagram:

_I Tunable narrowband Squarer_

integrator, _ _(_0)
y(t ) filter yf(t ) and averager

(rms meter)

As a result of the filter

oo
yf(t) = y(T)h(t - T)dT (FI)

--00

where h(t) is the filter response to a unit impulse. From equation (FI)_ the

power spectrum of y and yf must be related as follows (see table VI):
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where H(_) is the frequency-response function of the filter for unit sinus-

oidal input and is given by

H(_) = h(t)e-i_tdt (F3)
m_

The filter is selected so as to reject frequencies except in a bandwidth

defined by

=_h - _

where _h and _Z define the frequency limits of the band which_ for practical

filters_ usually correspond to the points on the frequency-response curve of the

filter where the response is 3 decibels below the maximum.

For a true rms meter_ the reading would be

T  i/2
Y_= _/0 Yf2(t)dt_ (F4)

In terms of the spectral functions_ however 3 the reading may be expressed as

= = (FS)

For an idealized rectangular filter of bandwidth _ and a gradually varying

spectrum_ this operation indicates the following relation between the true power

spectrum and the meter reading

where Cy(m) denotes the power spectrum at the center frequency of the filter.

Equation (F6) is reasonably true in practice. Thus, adjustment of the meter

reading to take into account the bandwidth of the filter yields the estimate of

the power spectrum.

It may be of interest to mention that equation (F6) is significant in

noise studies_ since noise-pressure data are presented in the literature for

various filter bandwidths such as octave bands (_h twice _Z)_ half-octave

bands_ third-octave bands_ etc. It is frequently desirable_ for purposes of

comparison_ to convert data obtained for a given bandwidth to a unit bandwidth_

and thus establish an approximation to the square root of the power spectrum.

When the square root of the power spectrum is plotted on a decibel scale_ it is

referred to as a spectrum-level plot.
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Many meters are available for indicating the true root-mean-square value

of any type of wave_ however_ they are not always suitable for field use. Many

meters_ used particularly in noise measurements_ are basically rectified average

types and are calibrated to give a true rms reading only for pure sine waves.

It may be of interest to show the extent of the error in reading that results
when an averaging meter is used instead of a true rms meter. In terms of the

probability-density-distribution function p(y) of the random signal_ the fol-
lowing relations exist:

oo

u

y2= a2= y2p(y)dy
--OO

OOfyjp y  y
Then for a signal having Gaussian distribution_

y2

i 202
p(y) = _ e (F9)

the following values are found

or _ (FIO)

Thus_ if an averaging meter indicated the true rectified average value of the

signal_ the rms value would be 1.25 times as great. The averaging meter_ how-

ever_ is usually calibrated in terms of the rms value for a sinusoidal way%
that is_

Therefor% the actual rms value of the random Gaussian signal is greater than

the reading given by the usual averaging meter by a factor i°25/_.i1 which is

approximately 1.12% thus indicating only a 12-percent error which is equivalent
to about I decibel.

Cross-SpectrumAnalyzer

A cross-spectrum analyzer has a schematic arrangement as follows:
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Tunable narrowband -ilMultiplier' _Cxy(_,T,Zk_)

x(t)_ filter centered at , integrator,

_, (bandwidth Z_0) _i and
r averager

Record length T

Tunable narrowband_ 190o ph Multiplier,

y(t)----_ filter centered at -b shifting ___ integrator,
_0, (bandwidth Zko) network and ---_ y(_,T,Zko)q_

I [averager

Mean- Square Measurement

Mean-square determination involves the use of the following type of
circuit:

y(t)____ Squaring _ _Integrator

circuit y2(t) and -----_y2(t ) = _2
averager

Probability-Density Analyzer

The probability-density ruination for a stationary random signal may be
estimated as shown in the following sketeh:

TI

T
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where

p(y,y + ny) = _(y) = ¥ Tn
n

or (FII)

i

- /, TnP(Y) _ ny
n

J

Based on equation (FII)_ probability-density analyzers have a schematic arrange-
ment as follows:

y(t) Voltage Gate

I (Yl, Yl + _Y) Clock n

Clock

P(Yl Division _y Division
by T n by _y
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TABLE I.

A B C D

Function Technique Time history Correlation function

1 Sinusoidal Sine wave -T
2

R('r) = _-- cos a_O*
y = a sin _0 t •

  J qFLJ- k,/ v /
Periodic Fourier series oo

y(t) = _._ (a n cos no_t + bn sin n_ot)
n=O

= £ Cneine0t
n=-_

y(t) R_i

N........ ing bat Fourier integral = _/_ F(_)e ic°ta_ 1 __Tdissipating y(t) -_ R(f)= Tlim 2"T_T y(t)y(t+ T) dt

Provided___ ly(t)Idtexists

Autooorrelationfunction.-

•-7 _ +r

G altzed.h..... .... ic _y(t) _TStationaryrandom analysis(power spec- R(T) = lirai__ y(t)y(t+ r) dt
trum representation) T--_ 2T J-T

(t) R0-) = R(-T); 1%(0)> IR('QI; R(0) = _ >0

Note thati i

0 TL R(T) =12 J__[ ¢(¢°)el°_Tdm=f0 ¢(o))cosa_rdm

Stationary random
Gaussian (with Same Same

zero mean) - T

I I

0 T L

Li edo.... tT0i
(with zero mean Same - - Each segment treated by block 4D

values) I a02 I Crl2 I - _22 -I _32 I

Mean-square values have distribution p((;)

Cross-correlationfunction.-

T
Rxy(,) = lira 1__ _;X(t')y(t+r)dtT--_ 2T

__t Notethat R (')= 1 ¢xy(_)eic°'d_

Two stationary Same ) xy 2 /__
random

-T liboth x(t) and y(t) have zero meanw_[ues

with variances ¢;x2 -and ¢Sy2, respectively,then
T

4_ %c,)_ lira_F x(t)_(t+7)dtT _ P-T

and correla*.ion coefficientis rxy ax_y
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MATHEMATICAL ANALYSIS OF FUNCTIONS.

E F G H I

Statisticalcharacteristics

Frequency plane representation Mean, average, --
or expected Mean square y2 = a2 + y2 Probabilitydensity p(y) Number of crossings
value Y- where c;2 is varimlce and peaks per second

_¢o) _ strength _ 1

2 -a N O = Ny = Np,y = _ y < a

vva_ - y

l] ICn 2 _-St_ ength -an21 bn2*n

_o _o _owhere

T _T __ al 2 a22
a =_2 "_0 Y(t)c°srm°0tdt y2=ao2+T+"2- + "'"sO = 1 _ y(t)dt; n T Depends on function

T 0 sO

bn = 2 --J0Ty(t)sinr_ot
bl2dt b22

+T+T+. • .T
1 _ -irm:0tdt"

Cn=_j 0 y(t)e

an - ibn c = an + thn
Cn _" 2 -n 2

_ . _ T

__ 1 f y2(t)d t Depends on functiony(t)dt _ = T
F(_) = f y(t)e-_tdt= a(e)+ ib(_) y = 1 T lira 2T J-T

a(f_)_ J y(t).... tdt and

b(_o)= 7_ y(t)sino_tdt

Power spectrum.-
¢(_o)

L y(t)dt y2= i iT Y2(t)dt¢(_o)= itrn1 F(o_)F(-e) Y =i T
T--_ 2_T J-T Depends on function

= _ y (t)e-i_tdt oi" - _ _ = L _ y2p(y)dywhere F(e) i T or y=_ yp(y)dy or -_

¢(_)= i_" iR(T)e-i°J"dT = _" R(7) ..... dr

¢(e)= _-_o) and ¢(e)>=0

0_ ¢(_o)d_= _(0) = y-2

L;..(t,dt _Jh_ ' V b
I_._ Y --_!2

1 _i 2u2 = NOe 20221T

Same O .// _(_o)dm p(y)= _2w e 2_2 Ny .... e

.i.e., where _12=// _2¢(0_)d_°t/le"normal" distribution

_v 2

......_ t treatedby block -!E' _c2 =/ja2p(_)d _ _ _o _)o{_le 2_2dq NO fJ0 p(_;)e2_;2d_Each 0 pc(Y)- fO P( Nc,y =

(See block 51)

Cross spectrum. - A jointdistributionwhich

Cxy(_)= Co-spectrum depends on thefunctions

= lira1 Fx{__)Fy(_) y

<°xY(_) T --_ 2_T 2i f= - -_ Cx?/(_o)&o x

where Fx(-e) = w-f_xT(t)ek°tdt -- For a two-di.... tonal..... 1

_ YT(t)e-k°tdior ........... = Rxy(0 ) distribution(zero means); .............
and F(¢o)= z 4

. . 1 -2---o_

! /__ Rxy(T)e-l(O_dT= Cxy(_O) - iqxy(CO) p(x,y)= _eCxy =

Cry(co)= ¢yx(_O) = Cyx(__o) For x(t) and y(t)with zero where
mean values, Rxy(0) z4 = qy2X2 + (;x2y2 _ 20xyXy

Cxy(_O)= Cxy(-e)= Cyx(_)) becomes the covari_ulce 2

and qx_y(e)= -qxy(-_o)= -qyx(O_)" Px_i0) (;4 = qx2_y2 - Pxy

Cohere_,_. - and p_ = Pxy(0)



TABLE II.- IN-BLY2-0UTPLY£RELATIONS FOR GUST RESPONSE

Power-spectrum a_roach Cross-spectrum approac_

(Amplitude information (Phase as well as

only) amplitude information)

Input: i

Characterizes the _w2 '_
atmosphere @i(_) ¢i(_ )

_w2 = Mean-square value of gust velocity i P

- Short period

ng

Frequency-response: H(a)12 H(_) Real
Characterizes the airplane l -,

Imag. \ f

Output: i@0(_) :_ @i0(_) =
Characterizes the H 2 X _i H × ¢iresponse

dx2 = Mean-square value of response S = _-

Spectral conversions

=2_f=w=v2_ _(_) = 1 ®(f) l_(_)_- _ =V



TABLE III.- EFFECTS OF "NOISE" ON COHERENCY AND FREQUENCY-RESPONSE FUNCTIONS

l Experimental transfer functions Coherency functions Uncontaminated
transfer functions

Case Basic spectra ICoher- 'oher- for incoherent

ent Incoherent noise ent Incoherent noise noise
Inoise noise

Pure linear system: Cx(e) _Y(_) ]2 = =

_(t) ____(t) _(_) -- --_o(_) _(_) _=_(_) __ = H(_) = Ho(_)
:_ _2(_)= I_o(_)I2 i

_y(_) i_s(_)12
Noise in measured input:

°P) I <o)i= t s<o)l%(_)
x(t). _------_ y(t) 1 + --

, %'y(_)=_(_) +_(_) _ (_) _x(_)
_(_)=_ _c(_)

n(t) )x'(t) : x(t) + n(t) CY(_) Ec(m) = Cx (_) + Cn (m)

Noise in measured output:

y'(t) = y(t) + n(t) Cx(_) IHs(_) 12 Cy(LO) + Cn(_)
y(t_----_ = _(_) 72(_) = - i%(_) tN(_)I = ,IHs(_) I

T _,(_) = _(_) + _(_) z + _y(---y _(_) = Ec(_)

nt_ _y,(_) = Cy(_O) _n(_) _e _uq(_ Hc(_°) = ¢_(_)
+ + _ Cx(_)

Noise in both in ut and out ut: i

X(t) _ y'(t) = y(t) + n2(t) Cx'(e) = Cx(_) + Cnl(e) + 2Re_xnl(_a_ = mm

___m_(t ) _ I_(_)l 2 _(_) + %_(_)
o_ _o Phase of

n2(t)--_ _x,y, = _x_(_) + Cxn2(to) _X(_) _nl(tol 72(_) = _ _nl/_,)_l_l + _n2(_)] Hc(to) is+ _x(co)_ _y-_-_3 ..... taminated

-----> + CnlY(m) + _nln2(_) Cxy(_O)
Ns(_)= _(_) + %z(_)

x'(t) = x(t) + nl(t ) Cy,(_o) = Cy(_) + _n2(_o) + _e_ym2(_o) _

Additional in ut:

_z(_)
y(t)= Yl(t) + Y2(t) SXlY(_)=%_P)+0_2(_) I_s(_)l_=1_(o)12+0_2(___20x_(O)1_(_)12 _2(o)= + _x2(_)j_2(_)l2 ._(_) =_o(_)

_t) CY(_)= _(_)+_(_) +_e[%g2(_ _c(_)=N_(_) *x_(_)I_(_)12



rO TABLE IV.- DYNAMIC LOADS INPUTS FOR JET AIRPLANE

Flight phases Approximate Relative
time duration Vibration sources severity

Warmup i to 15 min Jet exhaust Medium

Taxi 5 to 15 min Runway roughness; jet Medium
exhaust

Run-up 2 to 20 min Jet exhaust High

Take-off i to 5 min Runway roughness; jet High

exhaust; atmospheric
turbulence

Climb 3 to 30 min Jet exhaust; atmospheric Medium

turbulence_ boundary- to

layer turbulence high

Cruise and i to 8 hr (might Jet exhaust; atmospheric Medium

mission, include a tran- turbulence, boundary- to

flight sonic region) layer turbulence; high

maneuvers, buffet
etc.

Descent 5 to 15 min Atmospheric turbulence; Medium

boundary- layer
turbulence

Landing gear i to 15 min Flap buffet_ gusts Medium

down_ (atmospheric

flaps down turbulence)

Landing 5 sec to 2 min Impact; runway roughness Medium
(runway or

carrier)



TABLE V.- VIBRATION SOURCES

Frequency Most significant

rang% cps region_ cps

Rocket exhaust noise*:

Near field .......... 20 to 5_000 i00 to i_000

Far field .......... i0 to i_000 20 to 200

Turbojet ............ 50 to i0_000 I00 to i_000

Boundary-layer turbulence . i00 to 1%000 500 to 5,000

Buffeting and oscillating shocks _.

Launch vehicles ....... i to 500 2 to 200

Aircraft ........... 5 to 500 5 to 50

Atmospheric turbulence ..... 0 to 20 0 to i0

Wind shear ........... 0 to i0 0 to 5

Runway roughness ........ 0.5 to 30 0.5 to 5

*Depends strongly on rocket engine size_ figures are for moder-
ate size.

ii3



TABLE VI.- BASIC INPUT-0UTPUT RELATIONS

f(t) _i

f2(t ).... z _ y(t)

f3(t)--

Nature of

Function Technique Representation of input Transfer function Input-output relation output

information

h(t), response due to

unit impulse

h(t) = d_A(t)l(t)

f/Arbitrary Superposition f(t) = dA + A(0)5(t - O) y(t) : f(T)h(t - T)dT Time history
dt

where A(t) is response

to unit step

2 /oo 2Periodic Fourie .... ies f(t) Cne K(_) h(t)e-i_°tdt y(t) H(r_oo)Cn eir_°0t= = = Time history

n_ n_

1 /_ F(_)ei_td_ H(_) y(t) : 1 / _ H(_)F(_) ei_td_ Time historyDissipating Fourier integral f(t) = _ _ _ _

Cy(m) IH(m) I2¢f(m)
Generalized Power spectrum

2_ and relatedRandom harmonic ¢f(_) = llm F(_)F(-co) and Cfy(_) = H(_)¢f(_) statistical

analysis T _ _ characteristics

H(_) _(_) = H(_)%f(_)

From inputs fl, f2' f3' " " " fn form Hi(e ) Cy(_) = ¢I(_)HI(_)HI(-_) + ¢2(_)H2(_)H2(__)

Several Generalized ¢1(_), ¢2(_), ¢3(_), H2(_)• . . + ¢3(_)H3(_)H3(-_) + • • . Power spectrum
random harmonic H3(_) and related

statistical

inputs analysis ¢12(_)_ ¢23(_)_: .... + 2Re_¢12(_)Hl(-_°)H2(_) + @13(_)Hl(-_°)H3 (_) characteristics

¢13(_) .... + .... @23(_)H2(-_)H3(_ ) + . •_n(_)



T_ _I.- I_-O_PUT RELATI_S FOR SINC_-D_E-OF-FREEDOM _ST_

If response of continuous st_cture under lo_i_ p(x,y_t) is e_ressed in te_s of its

natur_ modes zi(x,y) as follows

z(x,y,t) = al(t)zI + a2(t)z2 + a3(t)z3 + • • •

then equation for individu_ mode response is

I II III IIIII

kO _i _i + _i_i + _i_i ai = P(x'y't)zi _

',.o =_i

= f(t) f g(x,y)zi _ : Qif(t), for space-fixed lo_i_

where M i : f zi2_Qif(t)

Frequency-response function is:

ai_st _ Qi _i _i

Hi(_) = i -_-_2 + i27i_" in which aijst = 7'_Mi 7i = --_i,cr 2_iMi

Several harmonic Random Wide-band spectral input

Ha_o_c input inputs white noise input and
highly tuned system

bI sin _it bI sin _it + b2 sin _2t __/__/i _ s_ _Y Y_Yt/k/!+lf_t_ _ _ _i,A A,II _ ,

Q

2

b22 2 g_ }f _

•_e envelope or mnplitude variation of this response is approximated closely by the Rayleigh prob_ility-density

Y e\ _j2distribution p(y) _


